

Reg. No.:		, T = 9 =	 *				

Question Paper Code: 21482

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Seventh Semester

Instrumentation and Control Engineering

IC 2401/IC 71 – DIGITAL CONTROL SYSTEM

(Common to IC 71 Digital Control System for Electronics and Instrumentation Engineering)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the advantages of digital control system?
- 2. Draw the block schematic of a typical digital control system.
- 3. State Shanon's sampling theorem.
- 4. Name any two frequency domain characteristics.
- 5. Obtain the z transform of e^{-at}
- 6. State the necessary condition for Jury's stability test.
- 7. State the Jordan canonical form.
- 8. Define controllability and observability.
- 9. Compare position and velocity form of PID controller.
- 10. What is a state regulator?

PART B - (5 × 16 = 80 marks)

11. (a) Sketch the block diagram for general sampled data system. Explain the function and various steps involved with a flow chart.

Or

- (b) (i) Explain the need and merits of digital control system. (8)
 - (ii) With diagram, Explain a typical flow control loop with digital control. (8)
- 12. (a) (i) Explain the data reconstruction process. (10)
 - (ii) How is the types of stability determined from the roots of the characteristic equation? (6)

Or

- (b) Discuss the factors that limit the choice of sampling interval and also state the rules for selection of sampling interval.
- 13. (a) (i) Explain the Jury stability test. (8)
 - (ii) Determine the stability of the system defined by the characteristic equation $z^3 + 3.3z^2 + 4z + 0.8 = 0$. (8)

Or

- (b) (i) Sketch a typical closed loop sampled data control system. (6)
 - (ii) Obtain the modified z transform of $G_p(s) = \frac{e^{-0.55}}{2s+1}$. (10)
- 14. (a) State and prove Caley-Hamilton theorem.

Or

(b) Draw the state diagram for the discrete-data system modeled by the following dynamic equations

$$x(K+1) = Ax(K) + Bu(K)$$

$$C(K) = Dx(K)$$

Find the transfer function C(z)/U(z) and also determine the characteristic equation of the system if $A = \begin{bmatrix} -1 & 1 \\ -0.5 & 0.2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

- 15. (a) (i) Write the equations of digital position and velocity forms of *P*, *PI* and *PID* controllers. (10)
 - (ii) Write a note on reduced state observers. (6)

Or

(b) Design a deadbeat controller for the following process $G_p(s) = \frac{1}{s(s+5)}$ with sampling interval T=1 sec.