

	-				-		
Reg. No.:			2.1				

Question Paper Code: 21480

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Fourth Semester

Instrumentation and Control Engineering

IC 2251/IC 43/EC 1263 A/10133 IC 403/080260004 — DIGITAL PRINCIPLES AND DESIGN

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Design a half adder using logic gates.
- 2. Realize the function $F = \sum m(0, 1, 3, 6, 7)$ using 8:1 multiplexer.
- 3. How will you convert JK flipflop into D and T flipflops?
- 4. Design a 3-bit ring counter.
- 5. Realise the given functions using suitable decoder

$$F_1 = \sum m(1, 2, 4, 6)$$

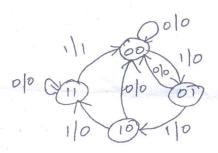
$$F_2 = \sum m (0, 2, 3, 4, 5).$$

- 6. Draw the architecture of a general FPGA.
- 7. Draw a two input NAND gate using TTL and CMOS logic families.
- 8. Define propagation delay.
- 9. Why is CMOS preferred over NMOS technology?
- 10. Write the applications of ECL and I²L logic families.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Simplify the given Boolean function using Quine Mccluskey method and draw the logic diagram using gates for the simplified Boolean expression.

$$F = \Sigma m(0, 3, 4, 5, 6, 7, 9, 10, 14). \tag{12}$$


(ii) Realise XOR function using NAND-NAND logic. (4)

Or

- (b) (i) Design a 4 bit binary adder/subtractor and explain its operation. (8)
 - (ii) Design a 4 bit binary to gray code converter. (8)
- 12. (a) Design a 4 bit up/down synchronous counter using JK flipflops and explain its operation. (16)

Or

(b) For the given state diagram design a sequential circuit using D flipflops.

13. (a) Realise the given functions using suitable PAL device

(b)

$$F_1 = \sum m (0, 1, 2, 5, 6, 9, 11)$$

$$F_2 = \sum m (1, 3, 5, 7, 10, 13, 15).$$
(16)

Or

- (b) Design a sequence detector which detects the sequence 11011 using PAL device. (16)
- 14. (a) What is the function of a pull up resistor when interfacing TTL IC to CMOS IC? Describe with an example. (16)

Or

- (b) Why ECL is called non-saturating logic? With the help of circuit diagram describe the operation of ECL OR/NOR logic. (16)
- 15. (a) With a neat diagram explain the operation of a CMOS inverter. (16)

Describe the operation of a nMOS inverter with neat diagrams.

(16)