

						100	100
Reg. No.:							

Question Paper Code: 21429

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Sixth Semester

Electronics and Instrumentation Engineering

EI 2352/EI 62/10133 EI 602 – PROCESS CONTROL

(Common to Instrumentation and Control Engineering)

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the need for process control?
- 2. A self regulatory system does not require a controller. True/False. Justify the answer.
- 3. List the advantages and disadvantages of integral and derivative action, in a PID controller.
- 4. What is single speed floating control?
- 5. What is controller tuning?
- 6. Why gain margin and phase margin are to be considered, while tuning a controller?
- 7. How to select secondary controller in a cascade control scheme?
- 8. Identify the input and output variables of distillation column.
- 9. Why installed characteristics of a control valve differ from inherent characteristics.
- 10. What is the function of an positioner in the actuator?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Illustrate serro and regulatory operation with an example for each	
		(ii)	Explain continuous and batch process with an example. (8)	
			Or	
	(b)		ain the mathematical model of a simple first order thermal level processes. (16)	
12.	(a)	(i)	Obtain the response of P,I,D controller for a step change in input.)
		(ii)	Illustrate the need and benefit of each component of composite PID controller. (10))
			Or	
	(b)	(i)	Design an electronic PI controller with proportional gain = 10 & integral gain = 0.1S ⁻¹ (8)	
		(ii)	With a neat block diagram, explain the functioning of a pneumatic PID controller. (8)	
13.	(a)	(i)	What is the use of evaluation criteria? Explain IAE, ISE, ITAE and 1/4 decay ratio criterias. (8)	
		(ii)	Explain frequency response method of controller tuning. (8)	1
			Ór	
	(b)		ain the process reaction curve method and Ziegler Nichol's method of ang a controller.	
14.	(a)	(i)	Explain control of a heat exchanger, using feed forward control. (8)	
		(ii)	What is split range control? Explain with a simple example. (8) Or	
	(b)	(i)	Explain issues involved in multivariable control. (8)	
		(ii)	Explain control of boiler, using three element method. (8)	

15.	(a)	(i)	With a neat diagram, explain the functioning of a valve What are the advantages of using the same?	e positioner. (10)	
		(ii)	Explain the working of a simple current to pressure con a neat diagram.	verter, with (6)	
	•		\mathbf{Or}		•
	(b)	(i)	Explain cavitation and flashing in control valves.	(6)	· .
		(ii)	Explain sizing of control valves.	(10)	
	-			•	

· •