

-			 		 	 	
į.		-		 			
Reg. No.:							

Question Paper Code: 23419

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester

Electrical and Electronics Engineering

EE 1201 – ELECTROMAGNETIC THEORY

(Regulation 2004/2007)

(Common to B.E. (Part-Time) Second Semester, Regulation 2005)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. What is vector and vector field? Give two examples.
- 2. State Stoke's theorem.
- 3. State Coulomb's law.
- 4. Define Electric field intensity.
- 5. Define magnetic vector potential.
- 6. Write the Lorentz Force equation.
- 7. Define conduction current and displacement current.
- 8. Give four similarities between electric and magnetic circuits.
- 9. State Poynting theorem.
- 10. What is intrinsic impedance?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Given that field $G = (y-1)a_x + 2xa_y$, find this vector field at P(2,3,1) and its projection on $B = 5a_x a_y + 2a_z$. (8)
 - (ii) Write a brief note on sources and effects of electromagnetic fields.

(8)

				-					
		(b)	(i) Given two points P(6,4,3) and Q(2,3,4). Find A•B and between A and B.	l angle (8)					
•			(ii) Explain Spherical coordinate system and differential elem Spherical coordinate system.	ents in (8)					
• .	12.	(a)	(i) State and prove Gauss's law.	(8)					
			(ii) Find Electric flux density D at (4,0,3) due to point -15.734mC at (4,0,0) and a line charge 9.427mC/m along the	charge y axis. (8)					
• • • • • • • • • • • • • • • • • • •			\mathbf{Or}						
		(b)	(i) Derive the Laplace and Possion's equation.	(8)					
			(ii) Find the capacitance of a parallel plate capacitor						
			(1) When the plates are of area 1 m ² , distance between the 1 mm, voltage gradient is 10^5 V/m and surface charge is 2μ C/m ² .						
·			(2) When the stored energy is 5mJ and the voltage ac plates is 5v.	ross the (4)					
	13.	(a)	Obtain the magnetic field intensity of an infinite long straight conductor carrying current I. (16)						
			Or						
		(b)	State and prove Ampere's circuital law.	(16)					
	14.	(a)	Derive an expression for force between the two parallel wires	carrying					
	17.	(α)	currents in the same direction.	(16)					
			\mathbf{Or}						
		(b)	Derive the Maxwell's equation in integral form and differential for Gauss's law and Faraday's law.	rm from (16)					
	15 .	(a)	Derive the point and integral form of Poynting vector.	(16)					
•			\mathbf{Or}						
		(b)	A 300 MHz uniform plane wave propagates through fresh which $\sigma = 0$, $\mu r = 1$ and $\epsilon r = 78$. Calculate: the attenuation const	ater for tant, the					
			phase constant, the wave length and intrinsic impedance.	(16)					