

Reg. No.:	:						
2008. 1.00.							

Question Paper Code: 21398

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Fourth Semester

Electrical and Electronics Engineering

EE 2254/EE 45 /EC 1260/10133 EE 405/080280028 – LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

(Common to Instrumentation and Control Engineering and Electronics and Instrumentation Engineering)

(Regulation 2008/2010)

(Also common to PTEE 2254 – Linear integrated circuits and applications for B.E(Part– Time) Third Semester – Electronics and Instrumentation Engineering – Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A
$$-$$
 (10 \times 2 = 20 marks)

- 1. List the advantages of integrated circuit over discrete component circuit.
- 2. Explain why inductors are difficult to fabricate in IC'S.
- 3. What are the different linear IC Packages?
- 4. What is the input impedance of a non-inverting amplifier?
- 5. List the applications of analog multipliers.
- 6. Write the significance of lock range of a PLL.
- 7. Define the terms settling time and conversion time related to DAC's.
- 8. What is the function of a voltage regulator?
- 9. What is the principle of switch mode power supplies?
- 10. How many resistors are required in a 12-bit weighted resistor DAC?

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Describe the Epitaxial growth process and photolithography process with neat diagram.

Or

- (b) Give the various ways for making integrated resistor.
- 12. (a) List the six characteristics of an ideal op-amp and explain in detail. Give the practical op-amp equivalent circuit.

Or

- (b) Explain in detail about DC characteristics of op-amp.
- 13. (a) Explain the principle of Instrumentation amplifier and derive the gain for that circuit.

Or

- (b) With neat sketches explain in detail about I/V and V/I converter using op-amp.
- 14. (a) Design a first order low pass filter for a high cut-off freq of 2 KHz and pass band gain of 2.

Or

- (b) Explain the operation of a square wave generator by drawing the capacitor and output voltage wave forms.
- 15. (a) Design an adjustable voltage regulator (5V to 15 V) with a short circuit current limit of 50MA using a 723 regulator.

Or

(b) Design a 4 bit R-2R ladder network, determine the size of each step if $r=10k\Omega$, $R_f=40k\Omega$ and $Vcc=\pm15V$. Calculate the output voltage for Do=1, $D_2=1$, $D_3=1$ if bit '1' applied as 5V and bit '0' applied as OV.

21398