

						Γ '				. P	4
	F - 7				1					4 F	4
										/ P	4
					1 1			•		4 P	4
• .				1						i P	4
·									•	4 P	4
			•							4 F	4
								1		4 F	4
		1			'		l l			4 F	4
		4			1 1					4 F	4
	3 E				•					4 F	4
		1								4 P	4
		1			1 .					4 7	4
		•								4 7	4
	1 I	•								4 7	4
	1 1									4 7	4
		1			1	•				4 7	4
Reg. No.:		L	•	1				I		4 7	4
		E .								4	4
	r •	Г									

Question Paper Code: 21355

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester

Electronics and Communication Engineering

EC 2205/080290011/EC 36 — ELECTRONIC CIRCUITS — I

(Common to Medical Electronics Engineering)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 \times 2 = 20 marks)

- 1. Define the term biasing.
- 2. Write the conditions of thermal stability.
- 3. Draw the circuit diagram of Darlington type amplifier.
- 4. Give reason for the improvement of CMRR in the amplifiers.
- 5. What is meant by Miller effect?
- 6. How do you calculate the bandwidth of a signal?
- 7. Mention the significance of heat sink in power devices.
- 8. Define class-D amplifier.
- 9. Define ripple factor.
- 10. Draw the block diagram of a power supply.

PART B -- (5 × 16 = 80 marks)

- 11. (a) (i) Derive the stability factor for voltage divider bias. (8)
 - (ii) For the circuit in Figure-1, draw the AC load line and determine the maximum output swing without distortion. (8)

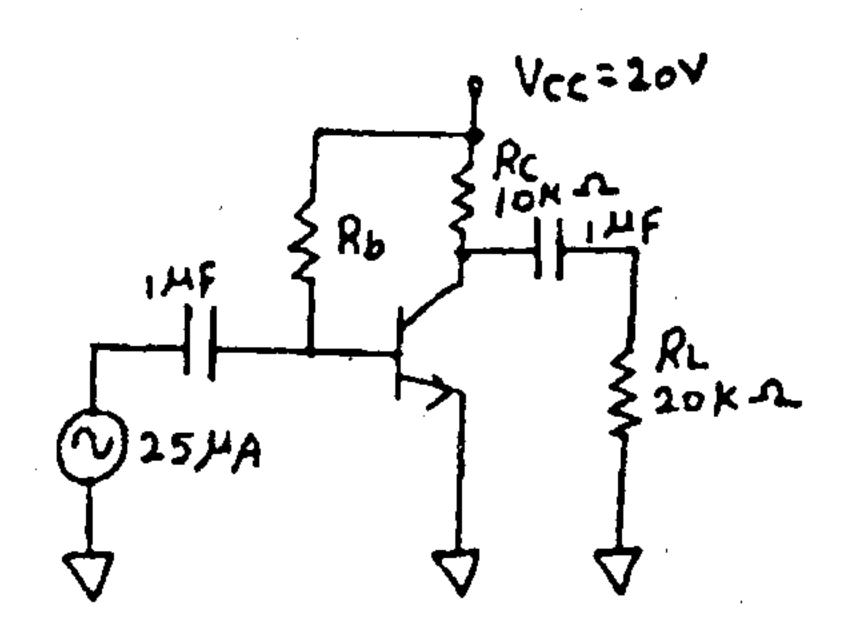


Figure -1

Or

- (b) (i) Discuss the various stabilization techniques of Q point in a transistor. (8)
 - (ii) Discuss in detail about the various bias compensation techniques.(8)
- 12. (a) (i) Compute the parameters of the circuit shown in Figure -2 with $\beta = 100$. (10)

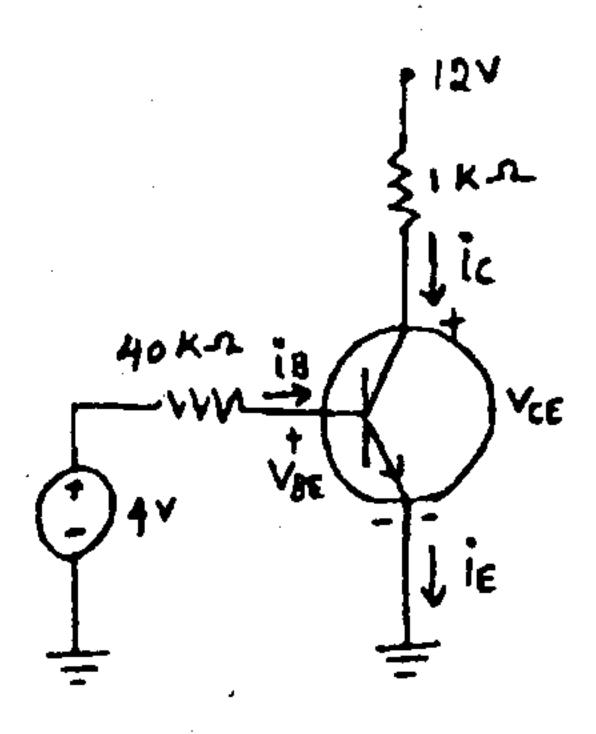


Figure –2

(ii) Explain in detail about the Miller's theorem.

(6)

Or

- (b) Compare CE, CB and CC transistor configurations.
 - (i) In terms of input impedance, output impedance, current gain and voltage gain. (10)
 - (ii) Draw the output characteristics of CE configuration and mark its regions of operation. (6)

13. (a) Determine the bandwidth of the amplifier shown in Figure -3. (16)

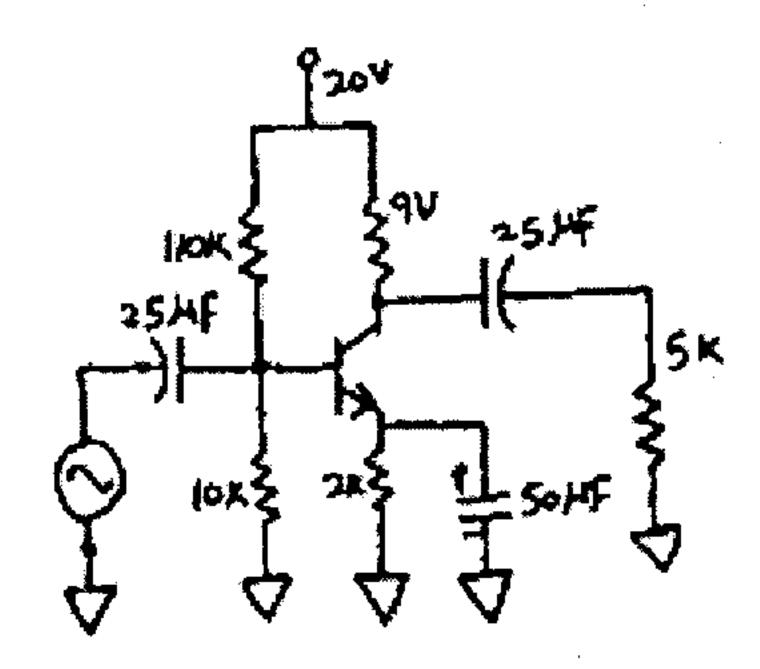


Figure -3

Or

- (b) (i) Explain in detail about the calculation of overall upper and lower cutoff frequencies of multistage amplifiers. (8)
 - (ii) Draw the high frequency equivalent circuit of FETs and analyze in detail. (8)
- 14. (a) A class-B push-pull amplifier supplies power to a resistive load of 12 Ω . The output transformer has a turns of 3:1 and efficiency of 78.5% (16)
 - (i) Maximum power output
 - (ii) Maximum power dissipation in each transistor
 - (iii) Maximum base and collector current for each transistor Assume $h_{\text{fe}} = 25$ and $V_{\text{cc}} = 20$ V.

Or

- (b) Explain in detail about the transformer coupled class –A audio power amplifier and analyze its efficiency. (16)
- 15. (a) How is regulation of output voltage obtained against line and load variation in SMPS? (16)

Or

- (b) (i) Explain the working of FWR with π filter. Derive its ripple factor. (8)
 - (ii) Describe in detail about the voltage multipliers. (8)