

											
			1	1	1		L				
				1	1						
	1	•		1							
				1							
	1	L		4 .	1						
	1										
	1			1						1	
	1			1		F :			1		
					•	•		i	1		
	L I		1			1			1	1	
									1		
						E .	1				
	1	5	I	ı	ı	9					
- - -	I i	ì									
Reg. No.:	1		'								

Question Paper Code: 21331

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Seventh Semester

Electronics and Communication Engineering

EC 2029/EC 708 — DIGITAL IMAGE PROCESSING

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define optical illusion and mach band.
- 2. Define checker board effect and false contouring.
- 3. Give the PDF of Gaussian noise and plot it.
- 4. Define and give the transfer function of contraharmonic filter.
- 5. Define image degradation model and sketch it.
- 6. Define rubber sheet transformation.
- 7. Write Sobel horizontal and vertical edge detection masks.
- 8. Define region splitting and merging.
- 9. State the optimality conditions for Huffman code.
- 10. State the need for data compression.

PART B - (5 × 16 = 80 marks)

- 11. (a) (i) Explain the basic concepts of sampling and quantization with neat sketch. (8)
 - (ii) Find DCT Transform and its inverse for the given 2×2 image [3 6; 6 4]. (8)

			[1 0 0]; $X2 = [1\ 0\ 1]; X3 = [1\ 1\ 0]$ (Tranpose these vectors) and analyze the principal components are used for remote sensing applications (16)	?
2.	(a)	follov	ribe histogram equalization. Obtain Histogram equalization for the ving image segment of size 5×5 ? Write the inference on image ent before and after equalization. (16)	9
			20 20 20 18 16	
			15 15 16 18 15	
	-		15 15 19 15 17	
			16 17 19 18 16	
•			20 18 17 20 15 (5×5) matrix	
			Or	
	(b)	(i)	Describe how homomorphic filtering is used to separate illumination and reflectance component? (8	e ()
	•	(ii)	How mean filters are used for image enhancement. (8)
13.	(a)		ribe constrained least square filtering for image restoration and ve its transfer function.	
			\mathbf{Or}	
	(b)	(i)	Explain the concept of geometric transformation for imag restoration?	
		(ii)	How wiener filtering is helpful to reduce the mean square error? (8	;)
14.	(a)	(i)	How do you link edge pixels through global processing? (8	3)
•		(ii)	Describe Watershed segmentation algorithm. (8	3)
			Or	
	(b)	(i)	Explain region based segmentation and region growing with a example.	
		(ii)	Discuss how to construct dams using morphological operations? (8	3)

Obtain forward KL transform for the given vectors.

15 .	(a)	(i)	Briefly explain Transform coding with neat sketch?	(8)
		(ii)	A source emits letters from an alphabet $A = \{a1, a2, a3, a4, a8\}$ probabilities $P(a1) = 0.2, P(a2) = 0.4, P(a3) = 0.2, P(a4) = 0.1$	5} with
		-	andP(a5) = 0.1.	(8)
			(1) Find a Huffman code for this source?	
			(2) Find the average length of the code and its redundancy?	
			\mathbf{Or}	
(b)	(i)	Generate the tag for the sequence 1321 for the probabilities	3	
			P(1) = 0.8, P(2) = 0.02, P(3) = 0.18	(8)
		(ii)	How an image is compressed using JPEG Image compr	ession

standard?

(8)