

•	 		 	 	 	 	
Reg. No.:							

Question Paper Code: 23400

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Seventh Semester

Electronics and Communication Engineering

EC 1401 — VLSI DESIGN

(Regulation 2004/2007)

(Common to B.E. (Part-Time) Sixth Semester Regulation 2005)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Define SSI, MSI, LSI and VLSI.
- 2. What are the different tools available in a typical CAD tool set?
- 3. Define threshold voltage of a CMOS transistors.
- 4. Define noise margin of a CMOS inverter.
- 5. Define Mealy network.
- 6. Write the HDL coding for Modulo 2 Adder.
- 7. What is bubble pushing?
- 8. What is data path library?
- 9. List the techniques of Ad-Hoc testing.
- 10. What is IDDQ testing?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	Exp.	lain in detail the silicon on insulator process with a neat sketch.	
			\mathbf{Or}	
	(b)	Desi	ign the layout for NAND gate and discuss about layout design rul	les.
12 .	(a)	Wha	at is meant by channel length modulation? Explain.	
			\mathbf{Or}	
	(b)		ive the equation for threshold voltage in PMOS enhancer sistor.	nent
13.	(a)		lain the different types of timing control present in verilog able examples.	with (16)
			\mathbf{Or}	-
	(b)		te a verilog code for 4 bit priority encoder, 8 : 1 multiplexer and ri y adder.	pple (16)
14 .	(a)	(i)	Explain programmable interconnect.	(8)
		(ii)	Realise the digital equation using CMOS transistors $y = pq + rs$. (8)
			\mathbf{Or}	
	(b)	Writ	te notes on :	*
		(i)	Full custom ASIC	(8)
	•	(ii)	XilinX programmable Gate Array.	(8)
15 .	(a)	Exp]	lain the scan-based test techniques.	(16)
			\mathbf{Or}	
	(b)	Exp]	lain the following terms :	
		(i)	Fault models	(8)
		(ii)	ATPG	(4)
		(iii)	Statistical Fault Analysis.	(4)