

Question Paper Code: 21362

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Fifth Semester

Electronics and Communication Engineering

EC 2302/EC 52 - DIGITAL SIGNAL PROCESSING

(Regulation 2008)

(Common to PTEC 2302 – Digital Signal Processing for B.E. (Part-Time)
Fourth Semester, Electronics and Communication Engineering – Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Find the 4-point DFT of the sequence $x(n) = \{1, 1, -1, -1\}$.
- 2. What is meant by in-place Computation?
- 3. Mention the advantages of cascade realization.
- 4. Convert the given analog transfer function $H(s) = \frac{1}{s+a}$ into digital by impulse invariant method.
- 5. List out the advantages and disadvantages of FIR filters.
- 6. Write the equation of Hamming window function.
- 7. What are the two types of quantization employed in digital system?
- 8. Define zero input limit cycle oscillations.
- 9. What is anti-imaging filter?
- 10. Give the applications multi-rate DSP.

PART B ---
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) State the following properties of DFT.
 - (1) Time reversal
 - (2) Parsavel's theorem. (8)
 - (ii) Perform the linear convolution of the given sequences $x(n) = \{1, -1, 1, -1\}, h(n) = \{1, 2, 3, 4\}$ using DFT method. (8)

Or

- (b) Derive the butterfly diagram of 8 point radix-2 DIF-FFT algorithm and fully label it.
- 12. (a) A desired low pass filter with the following specification is

$$0.8 \le |H(\omega)| \le 1.0; 0 \le \omega \le 0.2\pi$$

 $|H(\omega)| \le 0.2; 0.3\pi \le \omega \le \pi$

Design Butterworth digital filter using impulse invariant transformation.

Or

(b) (i) Obtain the cascade form realization of the digital system

$$y(n) = \frac{3}{4}y(n-1) - \left(\frac{1}{8}\right)y(n-2) + \frac{1}{3}x(n-1) + x(n).$$
 (8)

(ii) Convert the given analog filter with a transfer function

$$H(s) = \frac{2}{(s+1)(s+2)}$$
 into a digital IIR filter using bilinear transformation. Assume T=1 sec. (8)

13. (a) (i) Determine the frequency response of FIR filter defined by y(n) = 0.25x(n) + x(n-1) + 0.25x(n-2).

Calculate the phase delay and group delay. (8)

(ii) Discuss the design procedure of FIR filter using frequency sampling method. (8)

Or

(b) Design a FIR filter with the following desired specification

$$H_d(e^{jw}) = \begin{cases} 0, & \frac{-\pi}{4} \le \omega \le \frac{\pi}{4} \\ e^{-j2\omega}, & \frac{\pi}{4} \le |\omega| \le \pi \end{cases}$$

using a Hanning window with N = 5.

14.	(a)	(i)	Represent the following numbers in floating point format with five bits for mantissa and three bits for exponent.
			$(1) 7_{10}$
			$(2) 0.25_{10}$
			$(3) -7_{10}$
			$(4) -0.25_{10} . (8)$
	•	(ii)	Draw the product quantization noise model of second order IIR system. (8)
		•	\mathbf{Or}
	(b)	. (i)	Explain how signal scaling is used to prevent overflow limit cycle in the digital filter implementation with an example. (8)
		(ii)	Determine the dead band of the system $y(n) = 0.2y(n-1) + 0.5y(n-2) + x(n)$.
			Assume 8 bits are used for signal representation. (8)
15 .	(a)	(i)	Explain the multistage implementation of sampling rate conversion with a block diagram. (8)
		(ii)	A signal $x(n)$ is given by $x(n) = \{0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3,\}.$ (8)
			(1) Obtain the decimated signal with a factor of 2.
			(2) Obtain the interpolated signal with a factor of 2.
			\mathbf{Or}
	(b)	-	lain sampling rate increase by an integer factor I and derive the at-output relationship in both time and frequency domains.
	•	•	
			· · · · · · · · · · · · · · · · · · ·

•