

		 			 	 	 		
	ĺ		1.	l					i I
Reg. No.:	1								
iveg. I to									l. <u> </u>

Question Paper Code: 53020

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

First Semester

Civil Engineering

MA 105 – MATHEMATICS – I

(Common to all Branches)

(Regulation 2007)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Find the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$.
- 2. Explain, how to obtain the power of a square matrix using the principle of diagonalisation?
- 3. Write the equation of the cone whose vertex is the origin and base the circle $x = a, y^2 + z^2 = b^2$.
- 4. Find the angle between the lines $\frac{x}{1} = \frac{y}{0} = \frac{z}{-1}$ and $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$.
- 5. Determine the curvature of the straight line y = ax + b at an arbitrary point (x, y).
- 6. Find the envelope of the family of straight lines $y = mx + am^2$, m being the parameter.
- 7. If $f(x,y) = x^4 y^2 \sin^{-1}\left(\frac{y}{x}\right)$, then find the value of $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$.
- 8. If $x \sin(x-y)-(x+y)=0$; find $\frac{dy}{dx}$.
- 9. Solve $(D^2 + 1)^2 y = 0$, where $D = \frac{d}{dx}$.
- 10. Find the particular integral of $\frac{d^2y}{dx^2} 4y = \cosh(2x 1)$.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Verify Cayley–Hamilton theorem for the matrix $A=\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Hence compute A^{-1} .

Or

- (b) Reduce $6x_1^2 + 3x_2^2 + 3x_3^2 4x_1x_2 2x_2x_3 + 4x_3x_1$ into canonical form by an orthogonal transformation.
- 12. (a) (i) Find the shortest distance and its equations between the lines $\frac{x-6}{3} = \frac{y-7}{-1} = \frac{z-4}{1} \text{ and } \frac{x}{-3} = \frac{y+9}{2} = \frac{z-2}{4}.$ (8)
 - (ii) Find the equations to the lines in which the plane 2x + y z = 0 cuts the cone $4x^2 y^2 + 3z^2 = 0$. (8)

Or

- (b) (i) Find the equation of the sphere which passes through the points (1,0,0), (0,1,0), (0,0,1) and has its radius as small as possible. (8)
 - (ii) Show that the following lines are coplanar:

$$\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2} \text{ and } 3x-2y+z+5=0=2x+3y+4z-4.$$

- 13. (a) (i) Find the equation of the evolute of an ellipse represented by the parametric equations $x = a \cos t, y = b \sin t$. (8)
 - (ii) Find the circle of curvature of the curve $x^3 + y^3 = 3xy$ at $(\frac{3}{2}, \frac{3}{2})$ on it. (8)

Or

- (b) (i) Find the radius of curvature of the curve $xy^2 = a^3 x^3$ at the point (a, 0).
 - (ii) Find the envelope of the family of ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a+b=c.

- 14. (a) (i) Expand $e^x \log(1+y)$ in powers of x and y upto third degree terms.(8)
 - (ii) Examine the function $f(x,y) = x^4 + y^4 2x^2 + 4xy 2y^2$ for maxima and minima. (8)

Or

- (b) (i) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube. (10)
 - (ii) If $\varphi(x-az,cy-bz)=0$, then show that $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=C$. (6)
- 15. (a) (i) Solve $(x^2D^2 xD + 4)y = \cos(\log x) + x \sin(\log x)$. (8)
 - (ii) Solve $(D^3 D^2 6D)y = x^2 + 1$. (8)

Or

(b) (i) Solve the system:

$$\frac{dx}{dt} = 2y, \ \frac{dy}{dt} = 2z, \ \frac{dz}{dt} = 2x. \tag{10}$$

(ii) Derive the governing equation of an L-C-R circuit. (6)