

		 	T	T			 	
		•	ŧ.	{		t		
Reg. No. :	:					,		

Question Paper Code: 21321

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Seventh Semester

Computer Science and Engineering

CS 2403/CS 73 — DIGITAL SIGNAL PROCESSING

(Common to Fifth Semester — Information Technology)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Define energy signals and power signals.
- 2. What is correlation? What are its types?
- 3. What is meant by radix 2 FFT?
- 4. Give transform pair equation of DFT.
- 5. What are the characteristics of Chebyshev filter?
- 6. Write the transformation equation to convert low pass filter into band stop filter.
- 7. Write the equation for Blackman window.
- 8. What is zero input limit cycle oscillation?
- 9. What is decimation?
- 10. List various special audio effects that can be implemented digitally.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Consider the analog signal $x_a(t) = 3\cos 2000\pit + 5\sin6000\pi t + 10\cos12000\pi t .$						
			(1) What is the Nyquist rate for this signal?						
			(2) Assume now that we sample this signal using a sampling rate $F_s = 5000$ samples/s. What is the discrete time signal obtained after sampling?						
			(3) What is the analog signal $y_a(t)$ that we can reconstruct from the samples if we use ideal interpolation? (8)						
		(ii)	Derive the equation for convolution sum and summarize the steps involved in computing convolution. (8)						
	•		\mathbf{Or}						
	(b)	(i)	Determine the z transform and ROC of the signal $x(n) = -\alpha^n u (-n-1)$. (6)						
		(ii)	Check whether the discrete time system $y(n) = \cos[x(n)]$ is						
•			(1) Static or dynamic						
			(2) Linear or nonlinear						
	•		(3) Time invariant or time varying						
	•		(4) Causal or non-causal						
			(5) Stable or unstable. (10)						

12. (a) (i) Find eight point DFT of the following sequence using direct method:

$$\{1, 1, 1, 1, 1, 0, 0\}$$
 (10)

(ii) State any six properties of DFT. (6)

Or

(b) (i) Compute eight point DFT of the following sequence using radix 2 decimation in time FFT algorithm.

$$x(n) = \{1, -1, -1, -1, 1, 1, 1, -1\}$$
 (10)

(ii) Discuss the use of FFT in linear filtering. (6)

13. (a) (i) Obtain the direct form I, direct form II, cascade and parallel form realization for the system

$$y(n) = -0.1 y(n-1) + 0.2 y(n-2) + 3 x(n) + 3.6 x(n-1) + 0.6 x(n-2). (8)$$

(ii) For the analog transfer function $H(s) = \frac{2}{(s+1)(s+2)}$. Determine H(z) using impulse invariance method. Assume T = 1 sec. (8)

Or

(b) A low pass filter meeting the following specifications is required:

Passband – 0-500 Hz

Stopband – 2-4 kHz

Passband ripple – 3 dB

Stopband attenuation - 20 dB

Sampling frequency – 8 kHz

Determine the following:

- (i) Pass and stopband edge frequencies for a suitable analog prototype low pass filter.
- (ii) Order N of the prototype low pass filter.
- (iii) Coefficients and hence the transfer function of the discrete time filter using the bilinear z-transform.

- 14. (a) (i) Given a three stage lattice filter with coefficients $K_1 = \frac{1}{4}$, $K_2 = \frac{1}{4}$, $K_3 = \frac{1}{3}$, determine the FIR filter coefficients for the direct form structure.
 - Determine the coefficients of a linear phase FIR filter of length M = 15 has a symmetric unit sample response and a frequency response that satisfies the conditions $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & k = 0, 1, 2, 3 \\ 0 & k = 4, 5, 6, 7 \end{cases}$

Or

(b) Design an ideal high pass filter with a frequency response

$$H_d(e^{j\omega}) = egin{cases} 1 & ext{for } rac{\pi}{4} \leq |\omega| \leq \pi \ 0 & ext{for } |\omega| \leq rac{\pi}{4} \end{cases}$$

Find the value of h(n) for N=11 using hamming window. Find H(z) and compute magnitude response. (16)

- 15. (a) (i) Explain the method for converting the sampling rate by a factor I/D with block diagram and equations. (8)
 - (ii) Discuss sub band coding process in detail. (8)

Or

- (b) (i) With block diagram explain adaptive filtering based adaptive channel equalization. (8)
 - (ii) What is image enhancement? Explain various image enhancement techniques. (8)