		Question Paper	Code : 53202		
	B.E	./B.Tech. DEGREE EX	AMINATION, SEP	2020	
		Third Se	mester		
		Computer Science	and Engineering		
		15UCS302 -DATA	STRUCTURES		
		(Regulation	on 2015)		
Duration: One hour		D. D. D. J. (6		Maximum: 3	30 Marks
		PART A - (6 x (Answer any Six of the	•	\mathbf{s})	
1.		er of nodes in a binary t			CO1- R
	(a) h-1 2+1	(b) h+1 2– 1	(c) h*1 2-1	(d) h-1 2-1	
2.	The number of edges	from the root to the no	de is called	of the tree.	CO1- U
	(a) Height	(b) Depth	(c) Length	(d) Branch	
3.	In a max-heap, element with the greatest key is always in				CO2- R
	(a) Leaf node		(b) First node of lef	t sub tree	
	(c) Root node		(d) First node of rig	tht sub tree	
4.	What are the worst case and average case complexities of a binary search tree?				
	(a) O(n), O(n)	(b) O(logn), O(logn)	(c) O(logn), O(n)	(d) O(n), O((logn)
5.	Heap can be used as				CO3- R
	(a) Priority queue		(b) Stack		
	(c) A decreasing order array		(d) None of the mentioned		
6.	The minimum number of elements in a heap of height h is				CO3- R
	(a) 2^{h+1}	(b) 2 ^h	(c) $2^h - 1$	(d) 2^{h-1}	
7.	Assuming a heap is containing N nodes		CO3- R		
	(a) $log(N)$	(b) Nlog(n)	(c) $log(1/N)$	(d) log(N2))

Reg. No.:

8.	If several elements are competing for the same bucket in the hash table, what is it called?									
	(a) Diffusion	(b) Replication	(c) Termination	(d) Collison						
9.	•		collision using the hash bing will result in the hash		O4- App					
	0 1 2 42 3 23 4 34 5 52 6 46 7 33 8									
	(a) 2	(b) 3	(c) 4	(d) 5						
10.	A technique for dir	ect search is			CO4- R					
	(a) Binary Search	(b) Linear Search	(c) Tree Search	(d) Hashing						
	$PART - B (3 \times 8 = 24 Marks)$									
(Answer any Three of the following Questions)										
11.	Explain the concep	the concepts of on threaded binary tree in detail.								
12.	Write routines for s	CO2-U	(8)							
13.	Explain decision tre	CO3- U	(8)							
14.	With example ex	plain in detail the	various collision resoluti	on CO4- U	(8)					
	strategies.									
15.	Explain the various	s hashing techniques in	ı detail.	CO4-U	(8)					