Reg. No. :	
------------	--

Question Paper Code: 54021

B.E./B.Tech. DEGREE EXAMINATION, SEP 2020

Fourth Semester

Computer Science and Engineering

15UMA421 - DISCRETE MATHEMATICS

(Common to Information Technology)

(Regulation 2015)

PART A - $(6 \times 1 = 6 \text{ Marks})$

Duration: One hour

Maximum: 30 Marks

(Answer any Six of the following Questions)

1.	The contra positive of the conditional statement $P \rightarrow Q$ is given by				CO1-U
	(a) $\exists Q \rightarrow \exists P$	(b) $P \rightarrow Q$	(c) $(Q \rightarrow P)$	$(d) \ (P \to Q)$	
2.	The inverse of $Q \rightarrow P$ is				CO1- U
	$(a) \neg P \rightarrow \neg Q$	(b) $P \rightarrow Q$	$(c) \neg Q \rightarrow \neg P$	(d) none of th	iese
3.	The number of possible s $x, y, z \ge 0$ is	number of possible solutions of the equation $x + y + z = 15$ for Co , $z \ge 0$ is			
	(a) C(15, 3)	(b) C(16, 3)	(c) C(17, 2)	(d) C(18, 2)	
4.	In how many ways can 9 people be seated in a circle?				CO2- U
5.	(a) 6! The complement of the g	(b) 9! raph K_n is a	(c) 10!	(d) 8!	СО3- Е
	(a) null graph having n vertices (c) regular graph having $n-1$ vertices		(b) regular graph having n Vertices		
			(d) none of these		
6.	If a graph has 15 edges, what must the degrees of the vertices add up to?				
	(a) 25	(b) 15	(c) 30	(d) 45	
7.	7. The intersection of two normal subgroups of a group is a				CO4- R
	(a) normal subgroup	(b) group	(c) subgroup	(d) none of	the

				above					
8.	(N, +) is a				CO4- R				
	(a) normal group	(b) monoid	(c) group	(d) semigro	oup				
9.). If <i>R</i> is a commutative ring, then $(a \neq 0), a \in R$ is said to be zero divisor C if there exists an element $(b \neq 0), b \in R$ such that								
	(a) $a \cdot b = 0$ (b) $a \cdot b \neq 0$								
	(c) $a \cdot b = 1$		(d) none of the above						
10.	0. The inverse of an element $a \in R$ such that the binary operation * is defined by $a*b = a+b+2ab$ is								
	(a) $\frac{1}{2}$	(b) $\frac{a}{1+2a}$	(c) $-\frac{1}{2}$	(d) $-\frac{a}{1+2a}$					
	$PART - B (3 \times 8 = 24 \text{ Marks})$								
(Answer any Three of the following Questions)									
11.	By in direct method, pro	ove that		CO1- App	(8)				
	$(x)[P(x) \rightarrow Q(x)], (\exists x)$	$p(x) \Rightarrow (\exists x)Q(x)$).						
12.	2. Solve $s(k) - 5s(k-1) + 6s(k-1) = 2$, $s(0) = 1$ and $s(1) = 1$			CO2- App	(8)				
13.	3. Construct circuit matrix, incidence matrix and path matrix $p(v_2, v_4)$.			CO3- Ana	(8)				
14.	Show that every finite in	ntegral domain is a	field.	CO4- App	(8)				

15. State and prove Lagrange's theorem on groups. CO5- E (8)