		Question Pa	per Code: 56101			
	F	B.E./B.Tech. DEGREE EX	XAMINATION, SEP 2020	0		
		Sixth S	emester			
		Civil En	gineering			
		15UCE601- STRUCT	URAL ANALYSIS – II			
		(Regulat	ion 2015)	Maximum: 30 Marks		
Dur	ration: One hour	PART A - (6)	PART A - $(6 \times 1 = 6 \text{ Marks})$			
			e following Questions)			
1.	The expression for j	plastic modulus of section		CO1- R		
	(a) $Z_p = I/y$	(b) $Z_p = y/I$	(c) $Z_p = A/2(y_1 + y_2)$	(d) $Z_p = I/z$		
2.	Shape factor of squa	are section is		CO1- R		
	(a) 1.0	(b) 1.5	(c) 2.0	(d) 2.5		
3.	Static interminacy v B and C is	value of a continuous bear	m ABC, fixed at A and hir	nged at CO2- R		
	(a) 1	(b) 2	(c) 3	(d) 4		
4.	[P]=[k][Δ] where k	is		CO2- R		
	(a) Flexibility	(b) Stiffness	(c) Load	(d) Displacement		
5.	The relation betwee	n flexibility and stiffness	is	CO3- R		
	(a) Directly proport	ional	(b) Inversely propor	(b) Inversely proportional		
	(c) Both are same		(d) None of the above	(d) None of the above		
6.	Flexibility matrix m	nethod is known as		CO3- R		
	(a) Force method		(b) Displacer	ment method		
	(c) Equilibrium met	hod	(d) Graphical	method		
7.	Flexibility method in structural analysis is also known as					
	(a) Slope-deflection	method	(b) Moment-	(b) Moment-distribution method		
	(c) Consistent-deformat	tion method	(d) Stiffness	method		

Reg. No.:

8.	A triangular plane stres	C	O4- R					
	(a) 3	(b) 4	(c) 5	(d) 6				
9.	Most of the FEM softw	are use		C	O4- R			
	(a) Displacement method		(b) Force method					
	(c) Stress method		(d) Hybrid method					
10.	Three noded triangular	element is known	as	C	O4- R			
	(a) CST	(b) QST	(c) LST	(d) NLST				
	(Aı		(3 x 8 = 24 Marks) of the following Questions)					
11.	A two span continuous beam ABC has span lengths AB = 6 m and CO1-App (8) BC = 6 m and carries a uniformly distributed load of 30 kN/m completely covering the spans AB and BC.A & C are simply supports. If the load factor is 1.8 and the shape factor is 1.15 for the 'I' section, find the section modulus needed. Assume yield stress for the material as 250N/mm ² .							
12.	Write the step by step procedure of matrix stiffness method.			CO2- U	(8)			
13.	Analyze the continuous beam ABC using flexibility matrix method where support A is fixed and B and C are over rollers. Span $AB = 4m$ and $BC = 3m$. AB is loaded with a UDL of 60 kN/m and BC is loaded with a central point load of 100kN .				(8)			
14.	Explain the basic steps	involved in Finite	element of analysis of a structure.	CO4- U	(8)			
15.	What are all the Basic s	steps involved in F	inite Element Method? Explain.	CO4- U	(8)			