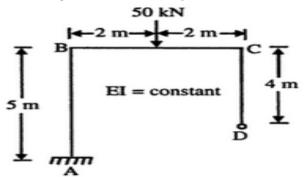
		Reg. No. :											
Question Paper Code: 56101C													
B.E./B.Tech. DEGREE EXAMINATION, SEP 2020													
Sixth Semester													
Civil Engineering													
15UCE601- STRUCTURAL ANALYSIS – II													
(Regulation 2015)													
Dura	ation: One hour							Μ	Iaxin	num:	30]	Mark	CS .
PART A - (6 x 1 = 6 Marks)													
(Answer Any Six of the following Questions)													
1.	The is defined as the ratio of the plastic moment of a section CO1- R to the yield moment of the section.						- R						
	(a) Elastic factor	(b) Shape factor	(c) l	Mom	nent t	facto	r		(d) H	Plasti	c fac	ctor	
2.	The expression for plastic	e expression for plastic modulus of section(Z_p) CO1- F				- R							
	(a) $Z_p = I/y$	(b) $Z_p = y/I$			(c)	Z _p =	A/2(y ₁ +y	2)	(d) 2	Z _p =I	/z	
3.	Static interminacy value o B and C is	f a continuous beam	ABC	C, fix	ed a	t A a	nd h	ingeo	d at			CO2	2- R
	(a) 1	(b) 2			(c)	3				(d) -	4		
4.	$[P]=[k][\Delta]$ where k is											CO2	2- R
	(a) Flexibility	(b) stiffness			(c)	Loa	d		(d) D	ispla	cem	ent
5.	Flexibility matrix method is known as CO3- R						- R						
	(a) Force method			(b) Displacement method									
	(c) Equilibrium method			(d) Graphical method									
6.	The relation between flexi	bility and stiffness is	5									CO3	- R
	(a) directly proportional (b) inversely proportional						-						
	(c) both are same (d) None of the above				e								
7.	The intersections of the sides of the elements are known as						CO4	- R					

(b) Nodes (c) Linear elements (a) Nodal lines (d) Nodal planes

8.	Most of the FEM soft	CO4- R				
	(a) displacement meth	nod (b) force method	(c) stress method	(d) hybrid method		
9.	One practical applicat	CO5- R				
	(a) Circular tanks	(b) Industrial buildings	(c) Bridges	(d) Arches		
10.	each member being jo	CO5- R				
	(a) Space frame	(b) Penta frame	(c) Cantilever beam	(d) Propped beam		
$PART - B (3 \times 8 = 24 \text{ Marks})$						

(Answer Any three of the following Questions)


Determine the shape factor and plastic moment of the symmetrical steel CO1- App (8) section (I section). Assume yield stress of steel is 250 MPa.Total depth=600 mm

Breadth of each flange= 250 mm

Depth of each flange =30 mm

Thickness of web= 12 mm

- 12. Write the step by step procedure of matrix stiffness method. CO2- U (8)
- 13. Analyse the frame using matrix flexibility method.

- 14. What are all the Basic steps involved in Finite Element Method? Explain. CO4- U (8)
- 15. A suspension bridge is of 160 m span. The cable of the bridge has a dip of CO5-U (8)
 12 m. The cable is stiffened by a three hinged girder with hinges at either end and at centre. The dead load of the girder is 15kN/m. Find the greatest positive and negative bending moments in the girder when a single concentrated load of 340 kN passes through it. Also find the maximum tension in the cable.

CO3- Ana

(8)