С		Reg. No. :											
		Question Paper (Cod	e: 5	3U()1							
M.E. DEGREE EXAMINATION, APRIL 2019													
Third Semester													
	Structural Engineering												
			ineer	ing									
		15PSE301 – STRUCTUI	RAL	DY	NAN	1ICS							
		(Regulation	2015	5)									
Dur	ation: Three hours						Max	ximu	ım: 1	00 N	larks	3	
		Answer ALL Q	Juest	ions									
		PART - A (5 x 1=	= 5 N	1ark	s)								
1.	1. If ω is forcing frequency and ω_n is the natural frequency then reson occurs when									nance CO1- R			
	(a) $\omega > \omega_n$	(b) $\omega = \omega_n$	(c) @	_n >ω			(d) $\omega \neq \omega_n$					
2.	The number of natural frequencies in a 2-DOF system will be CO2 -R												
	(a) Only one	(b) α	(c) T	wo			(0	l) As	requ	iired		
3.	An n-degree of system	legree of system will have CO3- R											
	(a) n+1 coordinates	(b) n-1 coordinates	6 (c) n	coor	dina	tes	(d) 2n coordinates				tes	
4.	If Φ is the mode shape, when an end is free it may be assumed: CO4 -R												
	(a) $\Phi = 0$	(b) $\Phi^{iv} = 0$ and $\Phi^{iii} = 0$) (c) Ф	ⁱⁱ = 0	and	Φ^{iii}	= 0		(d) 4	$o^i = 0$)	
5.	Principle of mode superposition applies only when the system is									CC)5- R		
	(a) Linear	(b) Nonlinear	(c) D	ynan	nic		(d) Static					
		PART – B (5 x	x 3=	15M	arks)							
6.	What is D'Alembert p	principle?								C	'O1-1	U	
7.	Define Natural frequency and Mode shape and explain the relation between CO2-U them.										U		
8	Explain the purpose	of introducing normal	(or	gene	raliz	ed)	coor	dina	tes i	n (<u>'03-</u> '	IJ	

8. Explain the purpose of introducing normal (or generalized) coordinates in CO3-U Mode Superposition method.

- 9. Write two basic differences between discrete systems and continuous systems. CO4-U
- 10. List at least three situations under which a dynamic system becomes nonlinear. CO5-U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

- 11. (a) A platform of weight 18kN is being supported by 4 equal columns CO1- App (16) which are damped to the foundation. Experimentally it has been computed that a static force 5 kN applied horizontally to the platform produces a displacement of 2.5mm. It is estimated that the damping in the structure is of the order of 5% of critical damping .Compute the following
 - (a) un damped natural frequency
 - (b) damping coefficient
 - (c) logarithmic decrement

(d) no. of cycles and the time required for amplitude of motion to be reduced from and initial value of 2.5mm to 0.25mm.

- Or
- (b) Derive the general expression for displacement U of an CO1- App (16) overdamped system.
- 12. (a) Derive the equations of motion for forced vibration of an CO2-App (16) undamped system. Also indicate the solution to this equation

Or

(b) Find the natural frequencies and modes of vibration for the CO2-App (16) system shown in fig.

13. (a) Explain orthogonality of mode vectors and prove it with respect CO3-U (16) to mass and stiffness.

Or

(b) Explain the coupled state of equations of motion and demonstrate CO3-U (16) how they are uncoupled.

53U01

14. (a) Derive the frequency equation of beam of length L with both ends CO4-App (16) fixed.

Or

- (b) Derive the frequency equation of beam of length L with one end CO4-App (16) fixed and the other end simply supported
- 15. (a) Describe Nonlinear vibration with examples and explain the CO5-U (16) Nonlinear model used to solve nonlinear vibration problems in general.

Or

(b) Describe a nonlinear vibration model and explain the approach to CO5-U (16) its solution including step-by-step integration.

53U01