	_	
4	_	7
•		

Reg. No. :									
------------	--	--	--	--	--	--	--	--	--

Question Paper Code: 51U04

M.E. DEGREE EXAMINATION, APRIL 2019

First Semester

Structural Engineering

		15PSE104 - STABILITY	OF STRUCTURES			
	(Wood	chart and Stability functi	ons table may be permit	tted)		
		(Regulation	n 2015)			
Dur	ation: Three hours		Max	ximum: 100 Marks		
		Answer ALL	Questions			
		PART - A (5×1)	l= 5 Marks)			
1.	Effective Length of	CO1- R				
	(a) 0.707 L	(b) L/2	(c) 2L	(d) L		
2.	In meth conservation of Ene	od equilibrium will be rgy.	established by Law of	CO2 -R		
	(a) Energy	(b) Rayleigh ritz	(c) Galerkin's	(d) Finite difference		
3.	A member subjected	CO3- R				
	(a) Beam	(b) Column	(c) Slab	(d) Beam-Column		
4.	Critical load of a por and it can sway is	tal frame for very high v	alues of girder stiffness	CO4 -R		
	(a) P _E	(b) $\frac{1}{4}$ P_E	(c) $2P_E$	(d) $4P_E$		
5.	In Buckling Analysis	s of Thin Plates	is negligible	CO5- R		
	(a) Normal Stress	(b) Normal Strain	(c) Shear Strain	(d) All the above		
		PART – B (5	x 3= 15 Marks)			
6.	Derive the general g	overning higher order dif	fferential equation of col	lumns. CO1-App		
7.	What is known as Difference ratio?					
8.	What is the amplification factor for deflection in beam-Column? CO3-U					
9.	Define: Stability functions and Rotation functions. CO4-U					
10.	Write the general g plates.	overning differential eq	uation for buckling of	rectangular CO5-U		

PART - C (5 x 16= 80Marks)

11. (a) By Equilibrium approach determine the buckling load of a column CO1- App (16) whose bottom support is hinged and top support is elastically restrained by a beam.

Or

- (b) Determine the buckling load of a fixed- hinged column using CO1- App (16) higher order differential equation.
- 12. (a) Using Finite Difference method, determine the buckling load of a CO2-App (16) fixed-hinged column. Obtain solutions with the column divided into two, three and four segments and extrapolate these results using Richardson's method.

Or

- (b) Using Finite Difference method, determine the buckling load of a CO2-App (16) hinged-hinged column. Obtain solutions with the column divided into two, three and four segments and extrapolate these results using Richardson's method.
- 13. (a) Derive the slope deflection equation for a beam column. CO3-App (16)

Or

- (b) Using Equilibrium approach find the maximum deflection of a CO3-App (16) simply supported beam column which consists of a transverse load Q at the centre and an axial force P at both ends.
- 14. (a) Find the critical load of a portal frame whose both bottom supports CO4 -App (16) are fixed. Axial load 'P' is acting at top of left column only. EI & l are same for all the members of the portal frame and there is no sway in the frame. For $\alpha_n = -2$ $\phi = 2.55$; For $\alpha_n = -6$ $\phi = 3.1$; For $\alpha_n = -3.5$ $\phi = 2.8$

Or

(b) Compute the critical loads corresponding to the two non-sway CO4 -App (16) modes of a portal frame whose both bottom supports are fixed. Axial load 'P' is acting at top of both columns. EI & l are same for all the members of the portal frame. For α_n = -7 φ = 3.13; For α_n = -2 φ = 2.55; For α_n = -6 φ = 3.1; For α_n = -3.5 φ = 2.8

15. (a) Using Equilibrium approach determine the critical load of a simply CO4 - App (16) supported rectangular plate

Or

(b) Derive the general governing differential equation for buckling of CO5-App (16) thin plates subjected to biaxial tensile force along with shear.