С		Reg. No. :										
			~ •									
	Question Paper Code: 51U02											
M.E. DEGREE EXAMINATION, APRIL 2019												
First Semester												
Structural Engineering												
15PSE102 - CONCRETE STRUCTURES												
(Regulation 2015)												
(IS456-2000, IS875 (1-5) 1987, SP (16) - 1980 and IS13920- 1993 are permitted)												
Dura	ation: Three hours						Max	kimu	m: 1	00 N	larks	5
		Answer ALL Q	uest	ions								
PART - A $(5 \times 1 = 5 \text{ Marks})$												
1.	The ratio of long spar	to short span exceeding	2 is	calle	d						CC	01 - R
	(a) Flat slab	(b) Two way slab	(0	c) On	e wa	way slab (d) None of these						
2.	The unsupported length to least lateral dimension ratio of column with end restaints is restricted to									CC	02 -R	
	(a) 30	(b) 50	(0	c) 60				(d)	20			
3.	Under the Direct Design Method in the interior span the proportion CO3- of negative design moment to total design moment is)3- R		
	(a) 0.35	(b) 0.45	(0	c) 0.6	5			(d)	0.55			
4.	The maximum value a strain of about	of compressive stress in o	conc	rete i	s rea	achec	l at				CC	04 -R
	(a) 0.002	(b) 0.0035	(0	c) 0.0	03			(d)	0.02			
5.	In ductile detailing, special confining rein least	when a column termir nforcement shall extend	nates in	into to th	o a e fo	footi oting	ng, ; at				CC)5- R
	(a) 200 mm	(b) 2d	(0	e) L _d				(d)	300 1	mm		
PART - B (5 x 3 = 15 Marks)												
6.	How will you calculate deflection due to creep as per IS 456?							CO1-U				
7.	What is the function of shear wall and what are its types?								CC)2- U		
8.	Distinguish drops and column head.									CO3	-U	

9.	Define plastic hinge.			CO4-U					
10.	Exp	lain the strong-column-weak-beam design concept.	CO5-U						
	PART – C (5 x 16= 80 Marks)								
11.	(a)	Determine the area of steel required for a beam $b = 300$ mm, d = 675 mm for carrying a factored moment of 185 kN m. Assume $f_y = 415 \text{ N/mm}^2$ and $f_{ck} = 20 \text{ N/mm}^2$. Solve the problem by (a) direct computation and (b) using SP 16.	CO1- App	(16)					
Or									
	(b)	In a flanged beam, $b_f = 960 \text{ mm}$, $b_w = 200 \text{ mm}$, $D_f = 125 \text{ mm}$, $d = 315 \text{ mm}$, and factored moment = 240 kN m. Check the capacity of the beam to carry the load and if it is safe, design the steel required. Assume Fe 415 steel and grade 20 concrete.	CO1- App	(16)					
12.	(a)	Design R.C braced column 400x500mm with $L_o = 9m$, $L_e = 6.75m$ and has 70kN-m and 10 kN-m as ultimate moments $My_{(top)}$ and $My_{(bottom)}$ respectively. The axial ultimate load is 2000 kN. If the column is bent in double curvature, determine the design moments (YY is the minor axis). Adopt M_{40} and Fe ₄₁₅ grades.	CO2- Ana	(16)					
	(b)	Design a corbel to carry a factored load of 500 kN at a distance of 200 mm from the face of a 300 x 300 mm column. Assume M30 concrete and Fe415 steel.	CO2- App	(16)					
13.	(a)	A flat plate with 7.5 m x 6 m panels on 500 x 500 mm columns has a slab thickness of 185 mm, designed for a total characteristic load (DL + LL) of 9.3 kN/m2. Check the safety of the slab in shear if grade 25 concrete and grade 415 steel are used for its construction. How can we increase the shear capacity of the slab?	CO3-App	(16)					
Or									
	(b)	Design a simply supported rectangular slab of size $4m \times 3m$ using yield line theory. The slab is subjected to a live load of 3.5 kN/m^2 and floor finish of 1 kN/m^2 . Use M20 grade of concrete and Fe 415 grade of steel.	CO3-App	(16)					
14.	(a)	Determine the salient points on the stress – strain curve of concrete in bending of a unconfined concrete member if cylinder strength of concrete used f_c is 25 N/mm ² . If such a concrete is confined in a section of breadth 300mm, total depth 500mm and clear cover of 50mm with 10mm (78 mm ²) stirrups at 100mm centers, determine the stress – strain curve for inelastic analysis of the structures. Use the relation $f_c = 0.8 f_{ck}$.	CO4 -App	(16)					

51U02

- (b) A reinforced concrete slab is 150mm thick with 20mm cover to CO4 -App (16) center of steel. If the positive steel reinforcement is 500mm²/m. Determine the approximate moment curvature. Determine the ductility factor assuming M30 concrete and Fe250 steel for reinforcements.
- 15. (a) In a multi-storeyed RC frame building located at Chennai, a typical CO5-App (16) column of 3.4m clear height carries an axial load of 3500 kN and a bending moment of 780kN-m under gravity and seismic load conditions. Design the column section with adequate ductility. Assume M25 grade of concrete and Fe415 grade of steel.

Or

(b) Explain with diagrams the main design requirements of ductile CO5-U (16) shear wall in earthquake resistant design.

51U02