С		Reg. No. :							
Question Paper Code: 51025									
M.E. DEGREE EXAMINATION, APRIL 2019									
First Semester									
Structural Engineering									
15PMA125 - APPLIED MATHEMATICS FOR STRUCTURAL ENGINEERING									
(Regulation 2015)									
Du	ation: Three hours			Ma	aximum: 100 l	Marks			
Answer ALL Questions									
		PART - A (5 x 1=	= 5 Marks))					
1.	$F(e^{-x^2/2}) =$					CO1- R			
	(a) $e^{s^2/2}$	(b) $e^{-x^2/2}$	(c) e^{-s^2}	/2	(d) $e^{x^2/2}$				
2.	For one point Gaussian Quadrature the sampling point is at								
	(a) $\xi = 0$	(b) $\xi = 2$	(c) $\xi =$	3	$(d\xi = 1$				
3.	Suppose 'f' is independent of 'y' then the solution of Euler's Equation is								
	(a) $\frac{\partial F}{\partial y^{1}} = c$	(b) $\frac{\partial F}{\partial y} = c$	(c) $\frac{\partial F}{\partial x^{1}}$	= <i>c</i>	(d) $\frac{\partial F}{\partial x} = c$				
4.	To find the smallest e	igen values of the matrix	then use _			CO4 -R			
	(a) Faddeev-Leverrier Method			(b) Power Method					
	(c) Rayley- Ritz Meth	(d) Approximation Method							
5.	Angle between the regression lines are parallel then CO5- R					CO5- R			
	(a) $\theta = 0$	(b) $\theta = \frac{\pi}{2}$	(c) θ =	$\frac{\pi}{4}$	(d) $\theta = \pi$				

PART - B (5 x 3 = 15 Marks)

6.	Define laplace transform of unit step function and find its Laplace transform.	CO1-U
7.	Define Rayleigh quotient of a Hermitian matrix.	CO2-U
8.	If y is independent of y, then give the reduced form of the Euler's equation.	CO3-U
9.	Define principle of least square.	CO4-U
10.	What are maximum likelihood estimators?	CO5-U

PDE:
$$u_{xx} = \frac{1}{c^2} u_{tt} - \cos \omega t$$
, $0 \le x < \infty$, $0 \le t < \infty$
BCs: $u(0, t) = 0$, u is bounded as x tends to ∞
ICs: $u_t(x, 0) = u(x, 0) = 0$.

Or

(b) A string is stretched and fixed between two fixed points (0, 0) and CO1- App (16) (1, 0). Motion is initiated by displacing the string in the form

 $u = sin\left(\frac{\pi x}{l}\right)$ and released from rest at time t=0.

Find the displacement of any point on the string at any time t.

12.	(a)	(i) By relaxation method, solve 12 x + y + z = 31, $2x + 8y - z = 24$, $3x + 4y + 10 z = 58$.	CO2- App	(8)
		(ii) Solve the equation by Choleski method	CO2- App	(8)
		4x + 6y + 8z = 0, $6x + 34y + 52z = -160$, $8x + 52y + 129z = -452$.		
		Or		
	(b)	(i) Using Gaussian three point formula evaluate	CO2- App	(8)
		$\int_{-1}^{1} \frac{x^2}{1+x^2} dx$ and compare with exact solution.		
		2	CO2 Ann	(8)

(ii) Evaluate
$$\int_{1}^{2} \frac{dx}{1+x^{3}}$$
 by Gaussian three point formula. (8)

13. (a) Find the external of the functional,

$$\int_{0}^{\pi/2} \left[2 xy + \left(\frac{dx}{dt} \right)^{2} + \left(\frac{dy}{dt} \right)^{2} \right] dt, \quad \text{given } x(0) = 0, \ x(\pi/2) = -1, \ y(0) = 0,$$

$$, y(\pi/2) = 1.$$

Or

- (b) Show that the curve which extremizes the functional CO3-App (16) $I = \int_{0}^{\frac{\pi}{4}} (y^{11^{2}} - y^{2} + x^{2}) dx \text{ under conditions}$ $y(0) = 0, y'(0) = 1, y(\frac{\pi}{4}) = y'(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}.$
- 14. (a) Use Faddeev-Leverrier method to find the characteristic CO4 App (16) polynomial and inverse of the matrix
 - $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}.$

Or

- (b) Use Faddeev-Leverrier method to find the characteristic CO4 -App (16) polynomial and inverse of the matrix.
 - $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}.$
- 15. (a) Find the maximum likelihood estimate for the parameter λ of a CO5-App (16) Poisson distribution on the basis of a sample of size n. Also find its variance. Show that the sample mean \overline{x} is sufficient for estimating the parameter λ of the Poisson distribution.

Or

(b) (i) In a trivariate distribution $r_{12} = 0.7$, $r_{13} = r_{23} = 0.5$. Find the CO5-App (8) partial correlation coefficient $r_{12.3}$ and multiple correlation coefficients $R_{1,23}$.

CO3-App

(16)

(ii) In a random sampling from normal population $N(\mu, \sigma^2)$, find CO5-App (8) the maximum likelihood estimators for μ when σ^2 is known.