С	Reg. No. :							
	Question Paper	· Code: 5	55U12					
M.E. DEGREE EXAMINATION, APRIL 2019								
	Electiv	ve						
Structural Engineering								
15PSE512–DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURES								
	(Regulation	n 2015)						
((Use of IS11384, IS 800 and Steel Tables is permitted)								
Duration: Three hours Maximum: 100 Marks								
	Answer ALL	Questions						
	PART - A (5 x 1	= 5 Marks	5)					
1. The tendency of the cor	crete slab to separate	from the st	teel sect	ion is called	CO1- R			

	•	*			
	(a) Shear	(b) Uplift	(c) Slip	(d) Torsion	
2.	The partial safety facto		CO2 -R		
	(a) 1 .15	(b) 1.5	(c) 1.2	(d) 1	
3.	Angles are examples of		CO3- R		
	(a) Flexible connector	(b) Rigid connector	(c) Bond connector	(d) All the abo	ove
4.	Web stiffeners are use		CO4 -R		
	(a) Flexural rigidity	(b) Shear resistance	(c) Stiffness	(d) None of th	ne above
5.	The concrete encased		CO5- R		
	(a) Shear	(b) Fire	(c) Bending	(d) Torsion	
		PART – B (5	x 3= 15Marks)		
6.	What is modular ratio		CO1-U		
7.	What is effective elast		CO2-U		
8.	Define Strength of Cor		CO3-R		
9.	Sketch any 3 cross sec		CO4-R		
10.	Explain Capacity Desi	(CO5-U		

PART – C (5 x 16= 80Marks)

11. (a) Explain the different stages of construction in composite deck CO1-U (16) slab and beam construction.

Or

- (b) Discuss the types and functions of shear connectors with neat CO1-U (16) sketches.
- 12. (a) Design a mid span section of a simply supported composite beam CO2- App (16) with 10m span. The beams are spaced 3m c/c to over 18m length of hall. Thickness of slab is 120 mm. The floor is to carry an imposed load of 2.5 kN / sq.m and partition load of 1.5 kN /sq.m. Assume floor finish load of 0.4 kN / sq.m. Assume suitable data if necessary.

Or

- (b) A steel tubular composite column section 400 mm diameter CO2- App (16) external and 360 mm diameter Internal filled with M30 grade concrete. The height of the column is 3.5m and is pin ended. Determine the plastic resistance of the composite section.
- 13. (a) Explain the functions of shear connectors. Also discuss the load CO3-U (16) bearing mechanism of the shear connectors.

Or

- (b) Explain full shear interaction and partial shear interaction cases CO3-U (16) with necessary diagrams.
- 14. (a) List out the components of a typical box girder. Explain in detail CO4 -U (16) the functions of each component.

Or

- (b) Discuss the structural behavior of box girders with neat sketches. CO4 -U (16)
- 15. (a) Compare the performance of a R.C.C building and a steel CO5-U (16) concrete composite building through a case study which you have reviewed during the course.

Or

(b) Explain the seismic behavior of composite beams and columns. CO5-U (16)