С		Reg. No. :										
Question Paper Code: 51026												
M.E. DEGREE EXAMINATION, APRIL 2019												
First Semester												
Power Electronics and Drives												
15PMA126 – APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS												
(Regulation 2015)												
Duration: Three hours Maximum: 100 Ma										larks		
Answer ALL Questions												
PART - A $(5 \times 1 = 5 \text{ Marks})$												
1.	Every matrix of order m x n can be factor into two product of Q having vectors of its columns and matrix R										01- R	
	(a) Upper triangular	er triangular (b) Lower triangular (c) Orthogonal (d) Equiv								nt		
2.	Total number of allotment in transportation problem for m rows and n columns									CC	02 -R	
	(a) _{m+n}	(b) _{m+n-1}	(c) m	+n-2			(d)	m-n				
3.	A continuous random variable x has a PDF $f(x) = kx^2e^{-x}$, find k									CC	93- R	
	(a) 1	(b) 0	(c) 1/	2			(d)	3/2				
4.											94 -R	
	(a) Parabolic	(b) Ellipse	(c) H	(c) Hyperbolic				(d) None of these				
5.	$\nabla^2 u = f(x, y)$ then it is called									CC	95- R	
	(a) Laplace			(b) Poisson								
	(c) One dimensional heat equation (d) None of these											
$PART - B (5 \times 3 = 15 \text{ Marks})$												
6.	Define Unitary matrix.								CO	1-U		
7.	Distinguish between Transportation problem and Assignment problem.								CC)2- U		

- 8. If the rth moment of a cumulative random variable X about the origin is r!, CO3-App Find the MGF of X.
- 9. State convergence of the series. CO4-U
- 10. Write down the SFPF for solving Laplace equation.CO5-U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

- 11. (a) Find the Pseudo inverse of CO1- App (16) $\begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 2 & 2 & 3 \end{bmatrix}$ Or
 - (b) Find the Pseudo inverse of the matrix CO1- App (16) $A = \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ -1 & 0 & 2 & -2 & 3 \end{bmatrix}$
- 12. (a) Use Two Phase method, Solve CO2- App (16) MinimiseZ = $60x_1 + 80x_2$ Subject to $20x_1 + 30x_2 \ge 900;40x_1 + 30x_2 \ge 1200; x_1, x_2 \ge 0$

- (b) Use Two Big M method, Solve CO2- App (16) $M axim izeZ = 5x_1 - 4x_2 + 3x_3$ Subject to $2x_1 + x_2 - 6x_3 = 20; 6x_1 + 5x_2 + 10x_3 \le 76;$ $8x_1 - 3x_2 + 6x_3 \le 50; x_1, x_2, x_3 \ge 0$
- 13. (a) (i) Find the M.G.F of Poisson distribution and hence find mean CO3-App (8) and variance
 - (ii) Find the M.G.F of Exponential distribution and hence find CO3-App (8) mean and variance

Or

CO3-App (16)

(b) If X has the distribution function

$$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{3} & \text{for } 1 \le x < 4 \\ \frac{1}{2} & \text{for } 4 \le x < 6 \\ \frac{5}{6} & \text{for } 6 \le x < 10 \\ 1 & \text{for } x \ge 10 \end{cases}$$

Find (i). p.d.f (ii) $P(2 \le x \le 6)$, (iii). Variance of X

- 14. (a) Find the eigen values and eigen functions of CO4 -App (16) $y'' + \lambda y = 0, 0 < x < 1, y(0) = 0, y(1) + y'(1) = 0.$
 - (b) Find the DFT of the four point sequence {x(k)}={1, 1, 0, 0} and CO4 -App (16) then calculate inverse DFT of the points. Faddeev-Leverrier method.
- 15. (a) Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square CO5-App (16) = y, x = 3 = y with u = 0 on the boundary and mesh length is 1.

Or

(b) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad \text{in } 0 < x < 1, t \ge 0 \text{ given that } u(x, 0) = 0, u(0, t) = 0,$ $u(1, t) = t. \text{ Compute u for the time step with } h = \frac{1}{4} \text{ by}$ Crank-Nicholson method

##