Reg. No. :

Question Paper Code: 51Q02

M.E. DEGREE EXAMINATION, APRIL 2019

First Semester

Communication Systems

15PCM102-ADVANCED RADIATION SYSTEMS

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART - A $(5 \times 20 = 100 \text{ Marks})$

1.	(a)	Explain in detail about balance to unbalance transformer.	CO1- U	(20)
		Or		
	(b)	List out the numerical techniques useful for analysis of antenna.	CO1- U	(20)
		Explain one of them in detail.		
2.	(a)	Explain the Field equivalence principle of aperture antennas.	CO2- U	(20)
		Or		
	(b)	Explain the different types of horn antenna used for	CO2- U	(20)
		and derive the expression for directivity.		
3.	(a)	Find the beam width between the nulls and half power points of the	CO3- App	(20)
		radiation pattern of a parabolid operating at 10GHz, which has a mouth diameter of 0.15m. Also find power gain.		
		Or		

(b) Derive the expression for Array factor of N element linear array CO3- App (20) with uniform amplitude and spacing between elements.

4. (a) Explain the radiation principle of a rectangular patch antenna with a CO4- U (20) neat diagram.

Or

- (b) With a neat diagram explain the radiation mechanism of a patch CO4- U (20) antenna. What are the excitation techniques available? Explain.
- (a) Is current distribution measurement important in an antenna? CO5- Ana (20) Justify. How it is being measured? Explain it through an experiment setup.

Or

(b) Design log periodic antenna array to cover a frequency range of 84 CO5- Ana (20) to 200 MHz and to have a 7.5dB gain. Compute the required element lengths and spacing for optimal working.