Question Paper Code: 51Q01

M.E. DEGREE EXAMINATION, APRIL 2019

First Semester

Communication Systems

15PCM101 - ADAPTIVE SIGNAL PROCESSING

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART - A $(5 \times 20 = 100 \text{ Marks})$

1. (a) Explain shank's method for solving normal equations. CO1- U (20)

Or

- (b) Explain and derive the expression for signal modeling using pade CO1- U (20) approximation.
- 2. (a) Let rx(k) be a complex autocorrelation sequence given by CO2- App (20) rx=[2, 0.5(1+j),0.5j]T. Use the Levinson-Durbin recursion to solve the autocorrelation normal equations for a second order all-pole model.

Or

- (b) Derive the variance of the periodogram using Blackman-Tukey CO2- App (20) method.
- 3. (a) Derive Wiener Hopf equations and the minimum mean square CO3- App (20) error for the FIR wiener filter.

Or

 (b) Briefly explain the estimation of a non stationary process by a CO3-U (20) Kalman filter.

4.	(a)	Explain normalized LMS algorithm.	CO4- U	(20)
	(b)	Or Explain the RLS algorithm with the exponentially weighted factor.	CO4- U	(20)
5.	(a)	Explain the need for multistage implementation of sampling rate conversion. Describe the implementation for a factor of I/D.	CO5- U	(20)
		Or		
	(b)	Enumerate in detail about the continuous and discrete wavelet transform.	CO5- U	(20)