С		Reg. No. :											
Question Paper Code: 51024													
M.E. DEGREE EXAMINATION, APRIL 2019													
	First Semester												
		CAD / CA	М										
	15PMA	A124 - ADVANCED NUM	MER	ICAL N	METI	HOD	S						
		(Regulation 2	015)										
Dur	ration: Three hours					Max	kimu	m: 1	00 N	larks	5		
		Answer ALL Qu	estio	ons									
1.	PART - A (5 x $1=5$ Marks)If the Eigen values are -3, 4, 1 then the dominant Eigen value of A isCO1)1 - R				
	(a) -3	(b) 4	(c)	1			(d)	None	e of t	the a	bove		
2.	The Error term in Adam – Bash forth Predictor formula is								CC)2 -R			
	$(a)\frac{14 h}{45}\Delta^4 y_0$	$(b)\frac{14 h}{45}\Delta^4 y_0$	(c)	$\frac{14 h}{45} \Delta^4$	y_0		(d)	None	e of t	the a	bove		
3.	In solving equation $u_t = \alpha^2 u_{xx}$ by crank- Nicholson method, to simplify method we take $\frac{(\Delta x)^2}{\alpha^2 k}$ as)3- R					
	(a) $\frac{1}{2}$	(b) 2	(c)	1			(d)	0					
4.	The PDE $xf_{xx} + y f_{yy}$								CC)4 -R			
	(a) $x > 0$ and $y < 0$		(b)	x < 0 a	nd y	< 0							
	(c) $x < 0$ and $y > 0$		(d) None of the					above					
5.	R(x) is orthogonal then									CC)5- R		
	(a) $\int_{0}^{1} R(x) F_{i}(x) dx = 0$	(b) $\int_{-1}^{1} R(x) F_i(x) dx = 0$	(c)	$\int_{0}^{1} R(x)$	dx =	0	(d)	$\int_{0}^{1} F_{i}(t)$	x)dx	= 0			

	$PART - B (5 \times 3 = 15 \text{ Marks})$				
6.	Solve the system of equations by Gauss elimination method	CO1-U			
	11x + 3y = 17, 2x + 7y = 16.				
7.	Write down Adam Bashforth's predictor formulae.	CO2-U			
8.	Give an example of parabolic equation.	CO3-U			
9.	Write down the finite difference form of the equation $\nabla^2 u = f(x, y)$	CO4-U			
10.	Define orthogonal collocation in Galerkin method?	CO5-U			
	PART – C (5 x 16= 80Marks)				
11.	(a) (i) Solve the equations using Thomas algorithm 3x + y = 9 x + 2y + 3z = 14 y - z = 1	CO1- App (8)			
	(ii) Solve by Gauss elimination method, the equations 2x + 3y - z = 5 $4x + 4y - 3z = 3$ $-2x + 3y - z = 1$	CO1- App (8)			
	Or				
	(b) Using power method find the largest Eigen value and	CO1- App (16)			

(b) Using power method find the largest Eigen value and CO1- App (16) corresponding Eigen vector, find the matrix. /1 6 1\

$$\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

12. (a) Find y (0.2) by Runge kutta method of fourth order if CO2- App (16) y'' - x y' = 0, y (0) = 1,y' (0) = 0

Or

(b) (i) Solve the equation y''(x) - xy(x) = 0 for $y(x_i), x_i = 0, 1/3, 2/3$, given that y(0) + y'(0) = 1 and y(1) = 1. (ii) Using Adam's Bash forth method find y(4.4) given $5xy' + y^2 = 2, y(4) = 1, y(4.1) = 1.0049,$ y(4.2) = 1.0097 and y(4.3) = 1.0143. CO2- App (8) CO2- App (8)

51024

13. (a) (i) Solve by Crank-Nicholson method, $u_t = \frac{1}{16} u_{xx} \ 0 < x < 1, \ t > 0 \ ; \ u(x, \ 0) = 0, \ u(0, \ t) = 0, \ u(1,t) = 100t.$ (8) Compute u for one time with h = 1/4. (ii) Explain implicit method (8)

(b) (i) Discuss ADI method to solve the two dimensional parabolic CO3-U (8) equations. (ii) Discuss the stability of two dimensional heat equation $u_t = \alpha$ CO3-U (8)

$$(u_{xx} + u_{yy}).$$

14. (a) Solve the Poisson's equation $U_{xx} + u_{yy} = -81xy$, 0 < x < 1, 0 < y < 1 given that u(0,y) = 0, u(x,0) = 0, u(1,y) = 100, u(x,1) = 100 and h = 1/3. (16)

- (b) Solve $u_{xx} + u_{yy} = 0$, $0 \le x, y \le 1$, with u(0, y) = 10 = u(1, y) CO4 App (16) and u(x, 0) = 20 = u(x, 1). Take h = 0.25 and apply Liebmann's method to 3 decimal accuracy.
- 15. (a) Solve the boundary value problem $u_{xx} + u_{yy} = -1, |x| \le 1, |y| \le 1$ and u=0 on |x| = 1, |y| = 1. Use the Galerkin finite element method to determine the solution values at the nodes $(0,0), (\frac{1}{2}, 0)$ and $(\frac{1}{2}, \frac{1}{2})$. (Or)
 - (b) Solve the boundary value problem u_{xx} + u_{yy} = -2, |x| ≤ 2, |y| ≤ 2 CO5-App (16) and u=0 on the boundary. Use the Galerkin finite element method to determine u at the nodes (0,0), (1,0) and (1,1).

##