Reg. No. :

Question Paper Code: 46704

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Sixth Semester

Mechanical Engineering

14UME604 - OPREATIONS RESEARCH

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

(Smith chart may be permitted)

PART A - (10 x 1 = 10 Marks)

1. The mathematical technique for finding the best use of limited resources in an optimum manner is known as

(a) operations research	(b) linear programming
(c) network analysis	(d) Least queuing theory

2. In the simplex method, variables that are assigned zero values are called

- (a) Basic variables (b) Non-basic variables
- (c) slack variables (d) artificial variables.
- 3. The method used for solving assignment problem is known as
 - (a) Stepping stone method
 - (b) Modified distribution method
 - (c) Hungarian method
 - (d) Enumeration method.

4.	In a n x n matrix of a number of straight lir	-	-	-	imality is reac	hed when the minimum
	(a) n^2	(b)	1/n	(c) n		(d) n/2
5.	PERT and CPM are					
	(a) techniques to(b) decision making(c) aids to determine(d) aids for decision	ing tech	niques cost implication		oject	
6.	A dummy activity	is used i	n PERT networ	k to rej	present	
	(a) Precedence rela	ationshij	0	(b) N	lecessary time	e delay
	(c) Resource const	rains		(d) I	dle resource.	
7.	Expected time to co	omplete	an activity is ca	alculate	ed from	
	(a) Optimistic time	e estima	te	(b) N	lost likely tim	e estimate
	(c) Pessimistic tim	e estima	nte	(d) A	ll of the above	e.
8.	Group replacement p	olicy is a	applicable for			
	(a) repairable iter(c) items that fail		tely		ms that fail pa ssimilar items	artially
9.	It may not be	_ to tota	lly avoid queue			
	(a) economical	(b) t	bad	(c) co	rrect	(d) proper
10.	A common assumption	on about	the players in a	a game	is that	
	(a) neither player(b) the players had(c) only one of the(d) the specific id	ve diffe e player	rent information s pursues a ration	n about onal str	ategy	
		Р	ART - B (5 x 2	= 10 N	larks)	
11.	What is the role of	surplus	variables in the	simple	ex method?	

12. Distinguish between transportation problem and an assignment problem.

- 13. Define event, activity, network and dummy activity.
- 14. Name the inventory control systems adopted in practice.
- 15. Classify the queuing models.

PART - C (
$$5 \times 16 = 80 \text{ Marks}$$
)

16. (a) Consider the given linear programming model and solve it using the simplex method.

Maximize
$$Z = 6X_1 + 8X_2$$

Subject to $5X_1 + 10X_2 \le 60$
 $4X_1 + 4X_2 \le 40$
 X_1 and $X_2 \ge 0$. (16)

Or

(b) Maximize
$$Z = x_1 + 2x_2 + 3x_3 - x_4$$
,
subject to $x_1 + 2x_2 + 3x_3 = 15$,
 $2x_1 + x_2 + 5x_3 = 20$,
 $x_1 + 2x_2 + x_3 + x_4 = 10$, (16)

17. (a) Consider the given table are involving three source and four destinations as reproduced below. The cell entries represent the cost of transportation per unit.

		1	2	3	4	Supply
	1	3	1	7	4	300
Source	2	2	6	5	9	400
	3	8	3	3	2	500
	Demand	250	350	400	200	-

Obtain the initial basic solution using the northwest corner method and then optimize solution using U-V method. (16)

Or

(b) Consider the following transportation problem involving three sources and four destinations. The cell entries represent the cost of transportation per unit. Obtain the initial feasible solution by VAM.
 (16)

		Destination							
		1	2	3	4	Supply			
	1	3	1	7	4	300			
	2	2	6	5	9	400			
	3	8	3	3	2	500			
Demand	250	350	400	200	1200				

18. (a) The following table gives the activities and duration of a construction project.

Activity	1-2	1-3	1-4	2-5	2-6	3-5	3-6	4-5	4-6	5-7	6-7
Duration	10	15	20	8	6	10	7	15	10	20	15

Draw the network for the project. Find the maximum flow. (16)

Or

(b) A project schedule has the following characteristics:

Activity	Time (weeks)	Activity	Times (weeks)
1 – 2	4	5 - 6	4
1 - 3	1	5 - 7	8
2 - 4	1	6 - 8	1
3 - 4	1	7 - 8	2
3 - 5	6	8 - 10	5
4 – 9	5	9 - 10	7

(i) Construct the network.

(ii) Compute E and L for each event, and

19. (a) (i) The cost of a machine is Rs.61000 and its scrap value is Rs.1000. The maintenance cost found from past experience is as follows:

Year	1	2	3	4	5	6	7	8
Maintenance cost	1000	2500	4000	6000	9000	12000	16000	20000

When should the machine be replaced? (8)

(ii) Classify the replacement study and also show the economic life of an assert. (8)

Or

(b) A look at the past records gives the following distribution for lead time an daily demand during lead time: (16)

Lead rate Distribution

Lead time (days)	0	1	2	3	4	5	6	7	8	9	10
Frequency	0	0	1	2	3	4	4	3	2	2	1

Demand rate distribution

Demand/day (units)	0	1	2	3	4	5	6	7
Frequency	3	5	4	5	2	3	2	1

20. (a) Write about strain gauges on rotating shafts.

(16)

- (b) A mechanic repairs four machines. The mean time between service requirements is 5 hours for each machine and forms an exponential distribution. The mean repair time is 1 hour and also follows the same distribution pattern. Machine downtime costs Rs.20 per hour and the mechanic costs Rs. 55 per day,
 - (i) Find the expected number of operating machines,
 - (ii) Determine the expected downtime cost per day,Would it be economical to engage two mechanics, each repairing onlytwo machines? (16)

#