A	Reg. No	.:												
	Question	Par	per (Coc	le:	577	02							
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019														
	Sev	ventł	n Sen	nest	er									
	Mecha	inica	ıl Eng	gine	ering	g								
	15UME702 – FIN	ITE	ELE	EME	NT	ANA	ALYS	IS						
	(Re	gula	ation	201	5)									
Dur	Duration: Three hours					Maximum: 100 Marks								
	Answe	er AJ	LL Ç	Jues	tions	8								
	PART A -	- (10) x 1	= 10) Ma	rks)								
1.	In weighted residual technique, the me	etho	ds ac	lopt	ed a	re						CC)1- R	
	(a) point collocation method		(b) le	east	squa	res m	etho	d					
	(c) galerkin's method		((d) a	ll of	the a	above							
2.	FEM gives accurate representation of											CC)1- R	
	(a) Non – Structural Problems		((b) C	Comp	plex	geom	entry	/					
	(c) Discretization of Structure		((d) N	lone	of th	ne abo	ove						
3.	To solve FEM problem, it subdivides simpler parts that are called	a lar	rge p	robl	em i	nto s	smalle	er,				CC)2- R	
	(a) Traction Force (b) Body Forc	e		(c)	Fini	te ele	ement	. (d) N	one	of th	e ab	ove	
4.	Example of 1-D Element											CC)2- R	
	(a) Bar (b) Triangle	((c) S	quar	e				(d)	Tetr	ahec	lron		
5.	Three noded triangular element is know	wn :	as									CC)3- R	
	(a) Constant Strain Triangular (CST)		((b) L	inea	ır Str	ain T	riang	gular	(LS	Г)			
	(c) Quadratic Strain Triangular (QST) (d) None of these													
6.	is defined o be a state of s shear stress directed perpendicular to	tress the p	s in v plane	whic are	h the assu	e nor imed	rmal s to be	stress e zero	s and o.			CC)3- R	
	(a) Plain Stress Analysis		((b) P	lain	Stra	in An	alysi	S					
	(c) Both a & b		(d) N	lone	of tl	nese							

7.	When friction reduces mechanical energy of motion is said to be	CO4- R				
	(a) simple	(b) damped				
	(c) random	(d) linear				
8.	When the particles of the shaft or disc move perpendicular to the axis of the shaft, then the	CO4- R				
	(a) Frequency of Vibration	(b) Damping Ratio				
	(c) Longitudinal Vibration	(d) Transverse Vibration				
9.	can be defined a the transmission of energy from one region to another region due to temperature difference.					
	(a) Mass Transfer (b) Longitudinal Vibrati	ions (c) Heat Transfer	(d) None of these			
10.	FEM equation for Fluid mechanics Element		CO5- R			
	(a) F=KT (b) F=KP	(c) F=KU	(d) F=KZ			
	PART – B (5 x	2= 10Marks)				
11.	List the methods are generally associated with	sis. CO1- U				
12.	Mention the characteristic of shape function.	CO2- U				
13.	What is meant by local and global coordinate	CO3- U				
14.	Give the stiffness matrix of a triangular elem	CO4- U				
15.	Note down the convection boundary condition	CO5- U				
	PART - C (5)	x 16= 80Marks)				

16. (a) Using Rayleigh Ritz methods calculate the deflection at the CO1-App (16) middle and end for the following cantilever beam.

- (b) Briefly discusses the various methods in weighted residual method to CO1- App (16) solve a finite element problem.
- 17. (a) A two step bar subjected to loading condition as shown in CO2- App (16)
 Figure..Draw the finite element model. Determine the Element stiffness matrices and assemble them into Global stiffness matrix

by using four elements. Also write the element equation. Take Area $A_1 = 250 \text{mm}^2$, $A_2 = 400 \text{mm}^2$ Young's Modulus = 200GPa.

(b) Derive a one dimensional linear interpolation formula for a CO2- App (16) function u = u(x) that is valid in the range u_1 through u_2 shown in figure

18. (a) Evaluate the shape function N_1 , N_2 , N_3 at the interior point 'P' for CO3- App (16) the triangular element shown in Figure

(b) A quadrilateral element is shown in an x, y coordinate system in CO3- App (16) figure 1. The nodes are located at the coordinates point as mentioned and a temperature distribution has computed at each node as T₁ = 100 ℃, T₂ = 60 ℃, T₃ = 50 ℃ and T₄ = 90 ℃, Using the shape functions, compute the temperature at x = 2.5 and y = 2.5.

19. (a) Determine the smallest natural frequency of a beam with clamped CO4 -Ana (16) ends, and of constant cross-sectional area A, moment of inertia I, and length L. solve the above problem with two reduced-integration Timoshenko beam (RIE) elements in the half-beam.

Or

(b) Evaluate the integral, $I = \int_{-1}^{1} (x^2 + \cos\left(\frac{x}{2}\right) dx$ (16)

using 2 points and 3 points Gaussian quadrature.

20. (a) Determine the temperature distribution through the composite CO5-App (16) wall shown in figure, when the convection heat loss occurs on the left surface. Assume unit area. Take wall thicknesses, $t_1 = 4$ cm and $t_2 = 2$ cm; Take properties $k_1 = 0.5$ W/cm^oC, $k_2 = 0.05$ W/cm^oC, h = 0.1W/cm² °C and Fluid temperature as $T_{\infty} = -5^{\circ}$ C. shown in Figure

Or

(b) In the problem of the flow of a viscous fluid through a circular CO5-App (16) cylinder assume that the fluid slips at the cylinder wall; i.e. instead of assuming that w = 0 at r = R0, use the boundary condition that

$$k\omega = -\mu \frac{dw}{dr}, r = R_o$$

in which k is the "coefficient of sliding friction." Solve the problem with two linear elements.