A		Reg. No. :					
	[Question Paper	Code: 52003				
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019							
	Second Semester						
	Mechanical Engineering						
	15UPH203–MATERIAL SCIENCE						
	(Common to Chemical Engineering)						
		(Regulation	on 2015)				
Dura	ation: Three hours				Maxim	um: 10)0 marks
		Answer ALI	Questions				
		PART A - (10 x	1 = 10 Marks)				
1.	At $T = 0$ K, the energy	gy levels located above	Fermi energy E _F	are			CO1- R
	(a) partially filled	(b) vacant	(c) filled		(d) 1	none o	of these
2.	In dielectric, the polarization is CO1-					CO1- R	
	(a) linear function of the applied electric field						
	(b) square function of the applied electric field						
	(c) exponential function of the applied electric field						
	(d) independent of e	lectric field					
3.	Conductivity of a ser	Conductivity of a semiconductor increases with CO2-1				CO2- R	
	(a) increase in tempe	rature	(b) decrease in te	emperat	ure		
	(c) constant temperature		(d) increase in band gap				
4.	Acceptor type impur	ities are the					CO2- R
	(a) trivalent atoms	(b)tetravalent atoms	(c) pentavalent	atoms	(d)	divale	nt atoms
5.	Water is a	substance.					CO3- R
	(a) paramagnetic	(b) ferromagnetic	(c) antiferromag	gnetic	(d)	diama	gnetic

6.	The Cooper pair is					CO3- R	
	(a) two electrons moving in the same direction (b) two electrons with				resultant spin zero		
	(c) two electrons connected through a phonon (d) two electrons con			ected like a boson			
7.	Me	tallic glasses are				(CO4- R
	(a) c	erystalline	(b) soft	(c) amorphous	;	(d) biomate	rials
8.	Whe	en particle size is r	reduced from micro to	nano, porosity i	S	(CO4- R
	(a) i	ncreased	(b) decreased	(c) same	(d) exponen	ntially increa	sed
9.	Crac	eks are				(CO5- R
	(a) v	volume defects	(b) point defects	(c) surface def	<i>fects</i>	(d) line defe	ects
10.	The	The entropy S for a reversible process is				(CO5- R
	(a) c	constant	(b) zero	(c) positive		(d) negative	2
 11. 12. 13. 14. 15. 16. 	PART – B (5 x 2= 10 Marks) State Wiedemann Franz law. What do you mean by Fermi level? Mention any two applications of a superconductor. How are carbon nanotubes (CNT) formed? What is meant by imperfections in a crystal? PART – C (5 x 16= 80 Marks) (a) Calculate electrical conductivity of a metal with relaxation time 10^{-14} second and density of electrons 6 × 10 ²⁸ m ⁻³ by obtaining an			CO1- R CO2- R CO3- R CO4- R CO5- R			
	expression for electrical conductivity for metals on the basis of classical free electron theory. Or						
	 (b) (i) Obtain an expression for the internal field experienced by an atom in a one dimensional array of atoms subjected to an external field and deduce Clausius – Mosotti equation. 			CO1- App	(12)		
	(ii) Using the above Clausius Mosotti equation , calculate the dielectric constant of the material for a solid elemental dielectric with density 3×10^{28} atoms / m ³ having electronic polarisability 2×10^{-40} Fm ² .				CO1- App	(4)	

17.	(a)	(i) Why does the conductivity of a semiconductor change with impurity content? Specify two elements that you would add to pure silicon to make it an extrinsic semiconductor of the n-type and the p type.	CO2- Ana	(8)			
		(ii) What are the differences between intrinsic and extrinsic semiconductors?	CO2- Ana	(8)			
	Or						
	(b)	(i) Obtain the expression of Hall coefficient in terms of current density and electronic charge by defining Hall effect.	CO2- Ana	(12)			
		(ii) How will you identify whether the given semiconductor is a p-type or n-type semiconductor?	CO2- Ana	(4)			
18.	(a)	(i) Classify magnetic materials based on their spin and explain them.	CO3- Ana	(8)			
(ii) Distinguish between hard and soft magnetic materials. CO3- Ana Or							
	(b)	(i) Distinguish between Type I and Type II super conductors.	CO3- Ana	(8)			
		(ii) Show that superconductors are perfect diamagnet.	CO3- Ana	(8)			
19.	(a)	(i) What are metallic glasses? How are they prepared?	CO4- U	(10)			
		(ii) Explain any two properties and applications of metallic glasses.	CO4- U	(6)			
	Or						
	(b)	Compare the properties of nanomaterials synthesized by PVD and CVD method by explaining any one method in detail.	CO4 Ana	(16)			
20.	(a)	What is creep? Discuss the factors affecting creep. Or	CO5- U	(16)			
	(b)	State the First and Second law of thermodynamics. Discuss Carnot cycle of a heat engine working between two temperatures T_1 and T_2 assuming $T_1 > T_2$. (T_1 is the temperature of the source and T_2 is the temperature of the sink).	CO5- U	(16)			