A	
\mathbf{A}	Reg. No. :

An example of shrinkage costs includes

(b) Storage costs

(a) Income freight

7.

Question Paper Code: 55704

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Fifth Semester

		Mechanical Er	igineering	
		15UME504 - OPERAT	IONS RESEARCH	
		(Regulation	2015)	
Dur	ation: Three hours		Maxim	um: 100 Marks
		Answer ALL	Questions	
		PART A - (10 x 1	= 10 Marks)	
1.	Transportation problem	n is basically a		CO1- R
	(a) Maximization mod	el	(b) Minimization mod	del
	(c) Transshipment pro	blem	(d) Iconic model	
2.	In the simplex method be	for solving of LPP, the	number of variables can	CO1- R
	(a) Not more than three	e (b) At least two	(c) At least three	(d) None of them
3.	North- west corner refe	ers to		CO2- R
	(a) Top left corner	(b) Top right corner	(c) Both of them	(d) None of them
4.	If there are 'n' jobs an of doing the jobs.	d 'm'machines, there wi	Ill be sequences	CO2- R
	(a) $n \times m$,	(b) $m \times n$,	(c) n ^m	$(d) (n!)^{m}$
5.	CPM is			CO3- R
	(a) Time oriented	(b) Event oriented	(c) Activity oriented	(d) Target oriented
6.	The major aspects of the	ne critical path method ar	re	CO3- R
	(a) Planning & Schedu	ıling	(b) Planning & Imple	ementation
	(c) Planning & Organi	zation	(d) None of the above	e

(c) Insurance

CO4-R

(d) Clerical errors

- 8. What can be defined as a useful idle resource which has economic value eg; raw materials, spare parts, finished items, etc? (a) Inventory Control (b) Inventory (c) Inventory Planning (d) None of the above 9. In a M | M | 1 queue, the service rate is (a) Poisson (c) Linear (d) None of these (b) Exponential 10. If the value of the game is zero, then the game is known as:
- CO5-R (a) Fair strategy (b) Pure strategy (c) Pure game (d) Mixed strategy
 - PART B (5 x 2= 10 Marks)
- List out the applications of operations research. 11. CO1-U
- 12. What is degenerate basic feasible solution in transportation problem? CO2-U
- What is the crashing of project network? CO₃-U 13.
- What is buffer stock? CO4-U
- 15. What is queue? CO5-U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) Solve the following LP problem using simplex method.

CO1- App (16)

CO4-R

CO5-R

Minimize $Z = 15X_1 + 6X_2 + 9X_3 + 2X_4$ Subjected to

$$2X_1 + X_2 + 5X_3 + 6X_4 \le 20$$
$$3X_1 + X_2 + 3X_3 + 25X_4 \le 24$$
$$7X_1 + X_4 \le 70$$
$$X_{1}, X_{2}, X_{3}, X_{4} > 0$$

Or

- (b) Food X contains 6 units of vitamin A per gram and 7 units of vitamin CO1- App (16) B per gram and costs 12 paise per gram. Food Y contains 8 units of vitamin A per gram and 12 units of vitamin B per gram and costs 12 paise per gram. The daily minimum requirement of vitamin A and vitamin B is 100 units and 120 units respectively. Find the minimum cost of product mix by the simplex method
- Determine an initial basic feasible solution for the following CO2-App (16) 17. (a) Transportation Problem using least cost method.

Destination

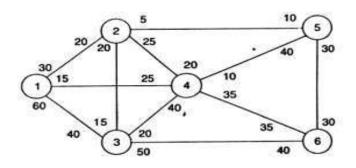
		\mathbf{D}_1	D_2	D_3	D_4	Supply
Origin	O_1	6	4	1	5	14
Origin	O_2	8	9	2	7	16
	O_3	4	3	6	2	5
	Demand	6	10	14	4	35

Or

(b) A small garment making unit has five tailors stitching five different CO2-App (16) types of garments All the five tailors are capable of stitching all the five types of garments. The output per day per tailor and the Profit (Rs.) for each type of garment are given below:

Tailors	Garments					
	1	2	3	4	5	
A	7	9	4	8	6	
В	4	9	5	7	8	
С	8	5	2	9	8	
D	6	5	8	10	10	
Е	7	8	10	9	9	
Profit (Rs.)per garment	2	3	2	3	4	

Which type of garment should be assigned to which tailor in order to maximize profit, assuming that there are no other constraints?


18. (a) (a) The following table shows the jobs of a network along with their CO3 Ana (16) time estimates.

Job	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8
a (days)	1	2	2	2	7	5	5	3	8
m(")	7	6	14	5	10	5	8	3	17
b (")	13	14	26	8	19	17	29	9	32

Draw the project network and find the probability that the project is completed in 40 days.

Or

(b) Consider the pipe network shown in figure which shows the flow CO3- Ana (16) capacities between various pairs of locations in both ways. Find the maximal flow from Node-1 to Node-6.

- 19. (a) The annual demand for an item is 3200 units. The unit cost is Rs.6/- CO4- App (16) and inventory carrying charges 25% per annum. If the cost of one procurement is Rs.150/-. Determine,
 - (i) Economic order quantity
 - (ii) Time between two consecutive orders
 - (iii) Number of orders per year
 - (iv) The optimal total cost

Or

(b) The maintenance cost and resale value per year of a machine whose CO4 Ana (16) purchase price is Rs. 7000 is given below

Year	1	2	3	4	5	6	7	8
Maintenance	900	1200	1600	2100	2800	3700	4700	5900
cost in Rs.								
Resale value	4000	2000	1200	600	500	400	400	400
in Rs.								

When should the machine be replaced?

20. (a) A TV repairman finds that the time spent on his job has an exponential CO5-App distribution with mean 30 minutes. If he repairs sets in the order in which they come in and if the arrival of sets is approximately Poisson with an average rate of 10 per 8 hours day. What is the repairman's expected idle time each day? How jobs are ahead of the average set just brought in.

Or

(b) Reduce the following game by dominance and find the game value:

Player B Ι II Ш IV 3 2 0 I 4 3 Player A II 4 2 4 Ш 4 2 4 0 IV 0 4 8 0

4

CO5-App

(16)

(16)