A		Reg. No. :											
		Question Pa	per	Cod	e: 59	970	6						
	B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019												
	Elective												
		Mechanic	al E	nginee	ering								
	15UME906- COMPUTATIONAL FLUID DYNAMICS												
(Regulation 2015)													
Dur	ation: Three hours							Ma	axim	um:	100]	Mark	S
	Answer ALL Questions												
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$													
1.	For partial differential equation, if $b^2 - 4ac = 0$ then equation is called						CO	1 - R					
	(a) Hyperbolic (b) Parabolic (c) Elliptic (d) None of					ne of	thes	se					
2.	Measure of circulation of fluid is called						CO	1- R					
	(a) Stability (b) Vorticity (c) Mixed flow				(d) None of these								
3.	. If flow across boundary is zero, normal velocities are set to be CO2-						2- R						
	(a) Maximum	(b) Zero	(c)	Minim	um		(d) val	ues c	of ne	arest	nod	e
4.	A space of interest where mass can cross boundary is CO2-						2- R						
	(a) Control volume	(b) Control surfac	e	(c) Co	ontro	l syst	tem	(0	l) Co	ontro	l bou	ındar	У
5.	For compressible, tw differential equations		-	the m	ninim	num	num	nber	of p	partia	al	CO	3- R
	(a) 3	(b) 4		(c) 5				(d) 6				
6.	. In steady flow of a fluid, acceleration of any fluid particle is CO3-						3- R						
	(a) Constant	Constant (b) Zero (c) Variable (d) Non zero					0						
7.	If Pu is upstream p number is equal to	pressure and Pd is	do [*]	wnstre	am j	press	ure,	Eul	er			CO	4- R
	(a) Pd - Pu/pV^2	(b) Pu - Pd/pV^2		(c) P	u - P	d/pV	3	((d) P	u - P	d/Pv		

8.	Representation of finite difference derivative is based on					CO4- R				
	(a) Taylor series expansion (b) Newton's 2nd law									
	(c)	Fredrick law	(d) None of these							
9.	Froude number indicates influence of Co					CO5- R				
	(a) (Gravity (b) Vel	ocity (c) I	Pressure	(d) Temperature	•				
10.	Inve	rse of Euler number is				CO5- R				
	(a) Reynolds number (b) Mach number									
	(c) Ruark number (d) Cavitation number			er						
PART – B (5 x 2= 10 Marks)										
11.	Define control volume. CO1-									
12.	What are time marching problems?					CO2- U				
13.	Write the Equation of unsteady one dimensional heat conduction.									
14.										
15.	. Summarize the advantages of $k \in model$.					CO5- U				
		т		0						
			PART – C (5 x 16=							
16.	(a)	Derive the momentum equ	_	pressible flow.	CO1- App	(16)				
	Or									
	(b)	Derive the energy equation	n for a 3D compress	CO1- App	(16)					
17.	(a) Explain the finite difference expressions for first order derivative with forward, backward and central reference approximation using Taylor series expansions.					(16)				
Or										
	(b)	Explain the Accuracy of H	Finite Difference So	lutions	CO2- U	(16)				
18.	(a)	Explain Two-dimensional heat conduction is governed through Explicit scheme, crank-Nicolson scheme and the fully implicit scheme				(16)				
Or										
	(b)	Explain briefly about Bur	ger's Equation.		CO3- U	(16)				

19. (a) Discuss in detail about the role of QUICK scheme and its variants CO4- U (16) in numerical analysis.

Or

(b)	Discuss in detail about the Central Difference scheme.	CO4- U	(16)
-----	--	--------	------

20. (a) Compare the general comments on SIMPLE, SIMPLER, CO5-Ana (16) SIMLEC and PISO algorithm.

Or

(b) Develop $k \in model$ equation for the turbulence flow. CO5- Ana (16)