С		Reg. No. :											
		Question Par	oer (Cod	e: 5	3802	2						
	B.E	. / B.Tech. DEGREE E	XAN	AINA	ATIC	DN, A	PRI	L 20	19				
		Third	Sem	ester									
		Informatio	on Te	chno	logy								
	15UI	T302 - DATA STRUC	CTUF	RES A	AND	ALC	GOR	ITH	MS				
		(Regula	ation	2015	5)								
Dur	ation: Three hours							Ma	ximu	ım: 1	1 00 1	Mark	S
		Answer A	LL (Quest	ions								
		PART A - (5	5 x 1	= 5 N	Mark	s)							
1.	The following post evaluated using a s	tfix expression with sinstack:	gle d	ligit o	opera	unds i	S					CO	1
	823^/23*+5	1 * -											
	Note that ^ is the exponentiation operator. The top two elements of the stack after the first * is evaluated are:												
	(a) 6, 1	(b) 5, 7		(c) 3,	2				((d) 1	, 5		
2.	The property of bin	nary tree is										CO	2
	(a) The first subset is called left sub tree (b) The second sub tree is called right sub tree												
	(c) The root cannot contain NULL (d) Any note in a tree						ree c	can h	ave a	almo	st 2	child	lr
3.	What is the maximum height of any AVL-tree with 7 nodes? AssumeCO3-that the height of a tree with a single node is 0.CO3-												
	(a) 2	(b) 3		(c) 4					((d) 5			
4.	The search technique that takes 0 (log n) time to find a data is											CO	4
	(a) Linear search	(b)Binary search		(c)Ha	shin	g			((d) T	ree s	searc	h
5.	Time complexity of Depth First Traversal of is										CO	•5	
	(a) $\Theta(V + E)$	(b) $\Theta(V)$	7])		(c	e) Θ(]	E)			(d) 6	9(V	* E)	

6.	Mention the applications of stack. CO1- R							
7.	For the set of {1, 4, 5, 10, 16, 17, 21} of keys, draw binary search trees of CO2- App heights 2, 3, 4, 5, 6.							
8.	A priority queue is implemented as a Max-Heap. Initially, it has 5 elements. CO3- R The level-order traversal of the heap is: 10, 8, 5, 3, 2. A new element 7 is inserted into the heap in that order. What is the level order traversal of heap after inserting 7?							
9.	What is collision? Explain any one technique to resolve it.CO4- R							
10.	Define minimum spanning tree. Explain Kruskal's algorithm with an CO5-R example.							
	PART – C (5 x 16= 80Marks)							
11.	 (a) Write a C function search(L,x) that accepts a pointer L to a list of CO1- App (16) integers and an integer x and returns a pointer to a node containing x, if it exists, and the null pointer otherwise. Write another function, srchinsert(L, x), that adds x to L if it is not found and always returns a pointer to a node containing x. Or 							
	 (b) Show how to implement a queue of integers in C by using an array queue[100], where queue[0] is used to indicate the front of the queue, queue[1] is used to indicate its rear, and queue[2] through queue[99] are used to contain the queue elements. Show how to initialize such an array to represent the empty queue and write routines remove, insert, and empty for such an implementation. 							
12.	 (a) The following three are known to be the preorder, inorder and CO2- App (16) postorder sequences of a binary tree. But it is not known which is which. I. MBCAFHPYK II. KAMCBYPFH III. ABCKYFPH Find which is preorder, inorder and postorder. Write the routines to perform inorder, preorder and postorder traversal in a binary tree. 							

Or

	(b)	(i) Write the algorithm for pre-order and post-order traversals of a binary tree.	CO2- Ana	(8)
		 (ii) Suppose the following sequences list nodes of a binary tree T in preorder and inorder, respectively : Preorder : A, B, D, C, E, G, F, H, J Inorder : D, B, A, E, G, C, H, F, J Draw the diagram of the tree. 	CO2- Ana	(8)
13.	(a)	Write the algorithms to perform insertion and deletion operations in Min heap and apply the same to insert 10,12,1,14,6,5,8,15,3,9,7,4,11,13 and 2, one at a time into an empty min binary heap. Show the tree after deleting the elements 15, 3 and 11.	CO3- App	(16)
	(b)	Or Define AVL tree? Construct AVL tree for following data 1, 2, 3, 4, 8, 7, 6, 5, 11, 10, 12.	CO3- App	(16)
14.	(a)	(i) Formulate an ADT to perform for the Union and find operations of disjoint sets.	CO4-App	(8)
		(ii) Describe about Union-by-rank and Find with path compression with code.	CO4-App	(8)
	(b)	Show the result of inserting the keys 10111101, 00000010, 10011011, 1011110, 01111111, 01010001, 10010110, 00001011, 11001111, 10011110, 11011011, 00101011, 01100001, 11110000, 011011111 into an initially empty extensible hashing structure with $M = 4$.	CO4-App	(16)

15. (a) Write Dijkstra's algorithm and apply the same for the following CO5-App (16) graph.

Or

(b) Explain BFS and DFS algorithm with example. CO5-A

CO5-App (16)