4	^	٦
(Ċ

Question Paper Code: 56803

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

		Sixth S	emester					
		Information	Technology					
		15UIT603- COM	IPILER DESIGN					
	(Regulation 2015)							
Dura	ation: Three hours		Maxi	mum: 100 Marks				
		Answer AL	L Questions					
		PART A - (5 x	x 1 = 5 Marks					
1.	Back end of the compiler depends on the phase of			CO1- R				
	(a) Semantic	(b) Syntax	(c) Intermediate code	(d) Lexical				
2.	Context Free Grammar belongs to which category			CO2- R				
	(a) Type 0	(b) Type 1	(c) Type 2	(d) Type 3				
3.	In which parse tree v	alue of the attribute is	s defined?	CO3- R				
	(a) Annotated tree		(b) Dependency graph					
	(c) Syntax tree		(d) Directed Acyclic grap	h				
4.	How much cost is mem,Reg	required to complete	the register statement Mov	CO4- R				
	(a) 2	(b) 1	(c) 4	(d) 3				
5.	D.Gries approach is	used to build		CO5- R				
	(a) DAG	(b) Basic block	(c) Flow graph	(d) Syntax tree				
	$PART - B (5 \times 3 = 15 \text{ Marks})$							
	D (* 1							

- 6. Define regular expression? Write the algebraic properties of regular expression. CO1- R
- 7. Enumerate the storage allocation strategies.

CO2-R

8. Construct the syntax tree for the following expression CO3-R X=a*c/d+a*-cCompare basic block and flow graph. CO4-R 10. Mention the properties code optimization. CO5-R $PART - C (5 \times 16 = 80 \text{ Marks})$ 11. (a) Discuss the following CO1- Ana (16)(i) Compiler Construction Tools (ii) Input buffering in compiler process Or (b) Analyze the various phases of compiler with the expression CO1- Ana (16)A=(B*C)/(X-Y)+(E+F).12. (a) Generate SLR parsing table for the following grammar. And parse CO2- Ana (16)the sentences bdc and dd S->Aa | aAc | Bc | bBa A->dB->dOr (b) (i) Explain in detail source language issues. CO2- Ana (8) (ii) Generate the CFG for the language aⁿaabⁿ, where n>=0. CO2- Ana (8) 13. (a) Explain the back patching technique with the following grammar. CO3- Ana (16) $E \rightarrow E_1$ or $E_2 \mid E_1$ and $E_2 \mid \text{not } E_1 \mid (E_1) \mid \text{id}_1 \text{ relop id}_2 \mid \text{true} \mid \text{false}$. Or (b) (i) Discuss the semantic rule for the following productions CO3- Ana (8)L -> E Return E -> E+T $E \rightarrow T$ T -> T*FF -> (E)F -> digit (ii) Construct annotated parse tree and dependency graph for the CO3- Ana (8) expression 10+5*5 based on the above grammar.

14.	(a)	Write notes on	CO4- U	(6)
		(i) Runtime storage environment		
		(ii) Simple code generator	CO4- U	(10)
		Or		
	(b)	Explain the procedure for DAG with the following code	CO4- U	(16)
		1. t1:=4*i 2. 2. t2:=a[t1] 3. 3. t3:=4*i 4. t4:=b[t3] 5. 5. t5:=t2*t4 6. 6. t6:=prod+t5 7. prod:=t6 8. 8. t7:=i+1 9. 9. i:=t7		
		10. if $i \le 20$ goto (1)		
15.	(a)	Explain in detail about principle sources of code optimization.	CO5- U	(16)
		Or		

(b) Elaborate the global data flow analysis with suitable examples.

CO5- U

(16)