A		Reg. No. :									
		Question Pap	er Co	de: 55	802]					
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019											
Fifth Semester											
Information Technology											
15UIT502 - DATA WAREHOUSING AND DATA MINING											
(Regulation 2015)											
Dur	Duration: Three hours Maximum: 100 Marks						arks				
Answer ALL Questions											
	PART A - (10 x 1 = 10 Marks)										
1.	is the heart of the warehouse. CO1- I							1- R			
	(a) Data mining databas	se servers									
	(b) Data warehouse database servers										
	(c) Data mart database servers										
	(d) Relational data base servers.										
2.	The data is stored, retrieved & updated in					CO1- R					
	(a) OLAB	(b) OLTP	(c) F	ГР			((d) S	MTF)	
3.	3. A model identifies patterns or relationships CO						CO2	2- R			
	(a) Descriptive. (b) Predi					tive.					
	(c) Regression.	(d) Time s				series	series analysis.				
4.	The various aspects of data mining methodologies is/are									CO	2- R
	(i) Mining various and new kinds of knowledge										
	(ii) Mining knowledge in multidimensional space										
	(iii) Pattern evaluation and pattern or constraint-guided mining.										
	(iv) Handling uncertainty, noise, or incompleteness of data										
	(a) i, ii and iv only (b) ii, iii and iv only (c) i, ii and iii only (d) All i, ii, iii and iv										

5.	Support Vector Machines (SVMs, also support vector networks) are						
	(a) Supervised learnin	ng					
	(c) Both a and b		(d) None of the above				
6.	is used to map a data item to a real valued prediction C						
	variable.						
	(a) Regression		(b) Time series analysis	5.			
	(c) Prediction.		(d) Classification				
7.	An Outlier is a			CO4- R			
	(a) Rare chance of occ	currence within a give	en data set				
	(b) Observation point that is distant from other observations.						
	(c) Both a and b						
	(d) None of the above						
8.	Incorrect or invalid da	ta is known as		CO4- R			
	(a) changing data.	(b) noisy data.	(c) outliers.	(d) missing data			
9.	Temporal data mining from large collections	-	information	CO5- R			
9.	-	-		CO5- R (d) All the above			
9. 10.	from large collections(a) Useful abstract	of temporal data (b) Non-trivial describes the discove					
	from large collections(a) Useful abstractWeb content mining a	of temporal data (b) Non-trivial describes the discove	(c) Implicit	(d) All the above			
	from large collections (a) Useful abstract Web content mining from thecont	of temporal data (b) Non-trivial describes the discover tents. (b) Web	(c) Implicit ery of useful information	(d) All the above CO5- R			
	from large collections (a) Useful abstract Web content mining from thecont	of temporal data (b) Non-trivial describes the discover tents. (b) Web PART – B (5	(c) Implicit ery of useful information (c) Page	(d) All the above CO5- R			
10.	 from large collections (a) Useful abstract Web content mining of from the cont (a) Text 	of temporal data (b) Non-trivial describes the discover tents. (b) Web PART – B (5	(c) Implicit ery of useful information (c) Page	(d) All the above CO5- R (d) Level			
10.	 from large collections (a) Useful abstract Web content mining of from thecont (a) Text Compare OLTP and Compare OLTP and Compare OLTP 	of temporal data (b) Non-trivial describes the discover ents. (b) Web PART – B (5 DLAP Systems.	(c) Implicit ery of useful information (c) Page x 2= 10Marks)	(d) All the above CO5- R (d) Level CO1- R			
10. 11. 12.	from large collections (a) Useful abstract Web content mining of from thecont (a) Text Compare OLTP and C Define Data mining.	of temporal data (b) Non-trivial describes the discover ents. (b) Web PART – B (5 DLAP Systems. ules mined from large	(c) Implicit ery of useful information (c) Page x 2= 10Marks) e databases?	(d) All the above CO5- R (d) Level CO1- R CO2- R			
 10. 11. 12. 13. 	from large collections (a) Useful abstract Web content mining of from thecont (a) Text Compare OLTP and C Define Data mining. How are association re	of temporal data (b) Non-trivial describes the discover ents. (b) Web PART – B (5 DLAP Systems. ules mined from large of clustering in data r	(c) Implicit ery of useful information (c) Page x 2= 10Marks) e databases?	(d) All the above CO5- R (d) Level CO1- R CO2- R CO3-R			
 10. 11. 12. 13. 14. 	from large collections (a) Useful abstract Web content mining of from thecont (a) Text Compare OLTP and C Define Data mining. How are association ru List the requirements of	of temporal data (b) Non-trivial describes the discover ents. (b) Web PART – B (5 DLAP Systems. ules mined from large of clustering in data r tial mining?	(c) Implicit ery of useful information (c) Page x 2= 10Marks) e databases?	(d) All the above CO5- R (d) Level CO1- R CO2- R CO3-R CO3-R			

16. (a) Define data warehouse. Explain its features. Diagrammatically COI- U (16) illustrate and discuss the data warehouses architecture.

Or

	(b)	With a neat sketch, Explain three tier architecture and different models of data ware housing.	CO1- U	(16)
17.	(a)	Discuss about different types of data and functionalities. Or	CO2 -U	(16)
	(b)	Analyze the various tasks and issues involved to Integrate a data Mining system with a Data Warehouse.	CO2- Ana	(16)
18.	(a)	What are Bayesian belief networks? Explain in detail about Bayesian Theorem. Give an example Or	CO3- App	(16)
	(b)	Elaborate in detail about to mine closed frequent data item sets and Constraint Based Association Mining.	CO3- Ana	(16)
19.	(a)	Explain K-means clustering algorithm and Write the key issue in hierarchical clustering algorithm. Or	CO4- U	(16)
	(b)	Explain outlier analysis in detail with an example. Discuss the use of outlier analysis.	CO4- App	(16)
20.	(a)	Explain the need and applications of Web mining and Web content mining in detail.	CO5- U	(16)
	(b)	Or Explain in detail about Spatial clustering algorithm (SD). Give an example	CO5- U	(16)