Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 47602

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Seventh Semester Instrumentation and Control Engineering 14UIC702 - DIGITAL CONTROL SYSTEM

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A -
$$(10 \text{ x } 1 = 10 \text{ Marks})$$

 The type of systems which are characterized by input and the output quantized at certain Levels are called as

(a) analog	(b) discrete
(c) continuous	(d) digital

2. In the sampled data control system, the controller output is given to

(a) Comparator (b) Process (c) Final control element (d) Zero order hold

+h

3. Shanon's sampling theorem states

۴h

 $(a) \ f_s \ {}_{\geq} f_m/2 \qquad \qquad (b) \ f_s \ {}_{\leq} \ f_m/2 \qquad \qquad (c) \ f_s \ {}_{\geq} 2f_m \qquad \qquad (d) \ f_s \ {}_{\leq} 2f_m$

4. The holding device which uses nth order polynomial for approximation is called

(a) $(n+1)^{m}$ order holding	(b) (n-1) th order holding device
(c) n th order holding device	(d) Zero order holding device

5. Z-transform of 6 δ (k+	-2) is					
(a) $\frac{6 z}{z-2}$	(b) 6 z ²	(c) 2	z ⁶	(d) $6z^{-2}$		
6. The stable region of Z	plane is					
(a) Inside the unit circle		(b) Outside the unit circle				
(c) Left half plane		(d) Right half plane				
7. For the n th order system, the number of state equations will be						
(a) 1 (b)	n	(c) (n+1)/2	(d)	n/2		
8. A state space model is fundamentally different from transfer function model in account of						
(a) Zeroes		(b) Single input & single output				
(c) Initial conditions		(d) P				
9. The input of a controll	er is					
(a) Sensed signal						
(b) Error signal						
(c) Desired variabl	e value					
(d) Signal of fixed	amplitude not	t dependent on	desired	l variable value		

10. In dead beat controller C(z) / R(z) is

(a) z^{-2}	(b) z^{-1}	(c) z^{-n}	(d) z^{+1}	
	PART - B (5 x 2 = 10 Marks)		

- 11. Distinguish digital controllers and analog controllers.
- 12. Define acquisition time, aperture time and droop rate with respect to sample and hold operation.
- 13. State and prove convolution theorem in z-transform.
- 14. Define Controllability and observability in state space approach.
- 15. State deadbeat algorithm

PART - C (5 x 16 = 80 Marks)

16.(a) Draw the configuration of basic digital control and explain the functions of each	
component in it (16))
Or	
(b) Describe in detail the configuration of the basic digital control scheme. (16)	
17. (a) Write a detailed technical note on Frequency domain analysis with examples (16)	
Or	
(b) (i) Derive the transfer function of Zero Order Hold. (8)	
(ii) Illustrate the significance of various time domain modes of discrete time systems.	
. (8)	ł

18. (a) For the sampled data system given below, find the response c(k) for unit step change in input r(k) (16)

Or

- (b) (i) Obtain the modified z-transform of unit ramp function. (6)
 - (ii) Determine the stability using Jury's test for the system with the following characteristic polynomial. (10)

 $\Delta(Z) = Z4 - 1.2Z3 + 0.07Z2 + 0.3Z - 0.08$

19. (a) (i) Obtain the state space model for the given pulse transfer function in decoupled form. (8)

$$\frac{y(z)}{u(z)} = \frac{2(z+5)}{(z+2)(z+3)(z+4)}$$

(ii) Find state transition matrix $\Phi(k)$ if the system state matrix is given as (8)

$$A = \begin{pmatrix} -3 & 0 \\ 0 & -2 \end{pmatrix}$$

Or

(b) (ii) Obtain the phase variable form of state model of the following system and find the Controllability of the same(16)

$$y(k+3) + 6y(k+2) + 9y(k+1) + 6y(k) = u(k)$$

20. (a) Develop the position and velocity forms of a digital PI and PD controllers. (16)

Or

(b) Design a pole placement controller (using state feedback) for the given digital system with state model,

$$\begin{bmatrix} x_1(k+1) \\ x_1(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

The desired closed loop poles should be taken as $0.5 \pm j \ 0.5$ (16)