A	L	Reg. No. :											
Question Paper Code: 53306													
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019													
Third Semester													
Electrical and Electronics Engineering													
15UEE306 -DIGITAL LOGIC CIRCUITS													
		(Regula	tion	2015	5)								
Duration: Three hours					Maximum: 100 Marks								
		Answer Al	LL Q	Juesti	ons								
		PART A - (10	x 1	= 10	Marl	cs)							
1.	Convert gray code 10001011 into binary.									CO	1-U		
	(a) (11110000) ₂	(b) (0111010	(b) $(01110101)_2$ (c) $(11100010)_2$ (d) $(11$							1110	010) ₂	1	
2.	The expansion of ECL i	S										CO	91- R
	(a) Emitter-collector logic (b) Emitter-complementary logic												
	(c) Emitter-coupled logi	ic	(d) Emitter Common logic										
3.	The process of elimination (a) State transition	ing the redundant sta (b) State assig	ates f gnme	from ent	the s (c)St	tate c ate re	liagi educ	am i tion	s kn ((own 1) Sta	as ate re	CO ealiza	2- U tion
4.	Full adder has											CO	2- R
	(a) 1 inputs	(b) 2 inputs		(c)	3 inj	outs			(0	1) 4 i	nput	S	
5.	When both inputs are hi	gh, then output of J	K fli	p-flo	p wil	l be						CC)3-U
	(a) 0	(b) 1		(c)	No c	hang	ge		(0	l) To	ggle		
6.	A flip- flop can store	bit data										CO	3-U
	(a) one	(b) two		((c) th	ree			(d) fo	ur		
7.	Output state in asynchronous sequential logic circuit changes when CO4-U)4-U				
	(a) Input changes				(b) Clock pulse is high								
	(c) Input and clock pulse change			(d) Clock pulse is low									

8.	The	fastest saturated log	gic family is	·			CO4- R			
	(a)]	FTL	(b) ECL	(c) MOS	(d) CMOS				
9.	VHI	DL stand for					CO5- R			
	(a) v	Verilog hardware de	escription language							
	(b) '	VHSIC hardware de	escription language							
	(c) Very hardware description language									
	(d) '	MEbus description	n language							
10.	Which of the following keyword defines a one dimensional array with elements of C the bit datatype?						CO5- R			
	(a) ł	bit	(b) boolean	(c) bit _	vector	(d) integer				
			PART – B (5	x 2= 10 Marks)						
11.	List the important characteristics of digital logic families.						CO1- U			
12.	Defi	ine Decoder				CO2- U				
13.	Distinguish between flip flop and latch.					CO3- R				
14.	Why is state reduction necessary?					CO4- R				
15.	. List out the level of abstractions in VHDL.					CO5- R				
			PART – C	(5 x 16= 80 Mark	s)					
16.	(a)	(i) Perform 597- method.	239 in XS-3 code	using the 10's	complement	CO1-C	(12)			
	 (ii) The message below coded in the 7-bit Hamming code is CO1-App (4) transmitted through a noisy channel. Decode the message assuming that at most a single error occurred in each code word. 1001001, 0111001, 1110110, 0011011 Or 									
	(b)	(i) Convert 1 hexadecimal value	100101_2 to its ec.	uivalent decima	l, octal and	CO1-Ap	p (4)			
		(ii) State the im explain the 2 input	portant characterist t ECL OR/NOR gate	ics of ECL gate e	es. Draw and	CO1-U	(12)			
17.	(a)	Simplify the fol Mccluskey method	llowing Boolean f d. $F(A,B,C,D) = \sum n$	unction by usin ι(0,2,3,6,7,8,10,1	ng a Quine- .2,13).	CO2-Apj	p (16)			

Or

	(b)	(i) Design and realize full adder using basic logic gates.	CO2-App	(8)				
		(ii) Design and realize 4:1 multiplexer using basic logic gates.	CO2-App	(8)				
18.	(a)	Design and Implement a Mod-5 Synchronous counter using JK flip flops.	CO3-Ana	(16)				
		Or						
	(b)	Explain how the JK flip is converted into D and T flip flop.	CO3-C	(16)				
19.	(a)	The output (y) of an asynchronous sequential circuit must remain 0 as long as one of its two inputs x_1 is 0. While $x_1 = 1$, The occurrence of first change in another input x_2 , should give $y = 1$ as long as $x_1 = 1$ and becomes 0 where x_1 returns to 0. Construct a primitive flow table and reduce the state.	CO4-C	(16)				
		Or						
	(b)	Realize the following Boolean functions using PLA and PAL. $Y_1 = \Sigma_m (1,2,4,5,6)$, $Y_2 = \Sigma_m (0,1,6,7)$, $Y_3 = \Sigma_m (2,6)$	CO4-C	(16)				
20.	(a)	Write a VHDL program in behavioural description of 4 bit up down counter using if else statement with logic diagram and truth table. Or	CO5-U	(16)				
	(b)	(i) Write a HDL code for realizing JK FF in behavioral modeling.	CO5-C	(8)				
		(ii) Write a HDL code for realizing half adder in behavioral modeling.	CO5-C	(8)				