A
/

Reg. No.:

Question Paper Code: 53303

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Third Semester

Electrical and Electronics Engineering

15UEE303 - FIELD THEORY

		(Regulatio	on 2015)		
Duration: Three hours			Maximum: 100 Marks		
		Answer ALL	Questions		
		PART A - (10 x	1 = 10 Marks)		
1.	The maximum space	rate of charge of that fu	nction is	C	O1 -R
	(a) Gradient	(b) Curl	(c) Divergence	(d) del opera	tor
2.	Under what condition	the vectors are said to	be in parallel	C	O1 -R
	(a) A.B=0	(b) AxB=0	(c) Δ.A=0	(d) $\Delta x A=0$	
3.	Poisson's equation is			C	O2-R
	(a) $\Delta^2 V = -\rho/\epsilon$	(b) Δ^2 V=0	(c) $\Delta V = -\rho/\epsilon$	(d) $\Delta V=0$	
4.	Relation between elec	etric field intensity and	electric flux density l	D= C(O2- R
	(a) ε/σ	(b) ε/E	(c) E ε	(d) σ / ϵ	
5.	Hysteresis loop gives	the relation of		C	O3- R
	(a) B lags H	(b) B leads H	(c) B independent	(d) none of the abo	ve
6.	Inductance of a toroid	is directly proportional	l to	C	O3- R
	(a) No.of turns	(b) square of the area	(c) area	(d) volume	
7.	Maxwells equationIV	is derived from		C	04- R
	(a) Faradays law		(b) Amperes circuit law		
	(c) Gauss law of electric field		(d) Gauss law of magnetic field		
8.	Circuit theory satisfie	S		C	04- R
	(a) Three dimensional analysis		(b) simple to unders	tand	
	(c) reference frequence	cy	(d) voltage is not di	rectly involved	

9.	For	a uniform plane wave E and H is at			CO5- R	
	(a) I	Parallel to each other	(b) different frequency			
	(c) I	Perpendicular to each other	(d) different phase			
10.	The	characteristic impedance of free space is		CO5- R		
	(a) I	Ratio of E and H	vity			
	(c) s	quare root of Ratio of E and H	ility			
		PART – B (5 x	2= 10Marks)			
11.	. Give the physical significance of Divergence.					
12.	Stat	e Coulomb's law of electric charges.		CO2- R		
13.	Brie		CO3- R			
14.	. Compare Field Theory and Circuit Theory				CO4- R	
15.					CO5- R	
		PART – C (5	x 16= 80Marks)			
16.	(a)	Verify the divergence theorem for the for $ax+y^3$ $ay+y^2z$ az and the surface is a cub $0 < y < 1$, $0 < z < 1$.	-	CO1 -App	(16)	
		Or				
	(b)	Explain in detail the basics and different co-ordinate system and derive its relevant		CO1- App	(16)	
17.	(a) (i) Obtain the dipole moment of electric dipole.		CO2- App	(8)		
	(ii) Derive an expression for energy density in electrostatic fields. Or			CO2- App	(8)	
	(b) Show that the tangential component of Electric field intensity is continuous across the boundary, whereas the normal component of Electric field intensity is discontinuous at the boundary.			CO2- Ana	(16)	
18.	(a)	Determine the magnetic field at point I carrying conductor.	P due to the current	CO3- Ana	(16)	
	(1.)	Or		CO2 A	(0)	
	(b)	(i) State and Explain Biot savarts law		CO3- Ana	(8)	
		(ii) Explain clearly about magnetic scale	ar and vector potential	CO3- Ana	(8)	

19. (a) With necessary explanation, derive the Maxwell's equation in CO4-U (16)differential and integral forms. Or (b) State and explain Faraday's law of electromagnetic induction and CO4 -Ana (16)derive the expressions for statically and dynamically induced emf. 20. (a) (i) Sate and explain Poynting's theorem CO5-U (12)(ii) What is the physical significance of the Poynting theorem CO5-R (4) Or (b) Determine the wave velocity and characteristic impedance for its CO5 U (16)

propagation in free space.