Α		Reg. No	.:										
Question Paper Code: 57302													
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019													
	Seventh Semester												
		Electrical and	Eleo	ctron	ics E	ngin	eerii	ng					
	15UEE	702 – POWER SYS	TEN	1 OP	ERA	TIO	N A	ND (CON	TRC	DL		
		(Re	gula	tion	2015)							
Duration: Three hours Maximum: 100 Marks								KS					
		Answe	er Al	LL Q	uesti	ons							
		PART A	- (10	x 1 =	= 10	Mar	ks)						
1.	Load curve is a plot of								CO1- R				
	(a) Load versus generation capacity (b) Load versus current							rent					
	(c) Load versus tir	c) Load versus time (d) Load versus cost of powe						er					
2.	What happens to frequency if the load on the generator increases?									CO1- R			
(a) Speed increases and frequency decreases													
	(b) Speed decreases and frequency decreases												
	(c) Speed increases and frequency increases												
	(d) Speed decrease	es and frequency ind	creas	es									
3.	Unit of speed regulation is										CO2- R		
	(a) Hz / MVAr	(b) Hz / MVA	(0	c) Hz	/ M	W		(0	d) H	Z			
4.	Area of frequency	stic	'β' is	5								CO2- R	
	(a) 1/ <i>R</i>	(b) <i>B</i>	(0	c)B +	1/ R			(0	1) <i>B</i> -	1/ R			
5.		ynchronous motor r	unni	ng or	n no l	load	is kn	lown	as				CO3- R
	(a) Alternator			(b). Synchronous condenser									
	(c) Synchronous In	(d)	(d). None of these										

6.	For synchronous condensers, the p.f. improvement apparatus should be located at									
	(a) Sending end (b) Receiving end	(c) Both (a) and (b) (d) None of t	hese							
7.	The optimum allocation of generator at ea various station load levels is called									
	(a) Load forecasting (b).State Estimation	mation (c). Unit commitment (d). SC								
8.	The equality constraint, when the transmiss considered, is	ion line losses are CO4- R								
	(a) $\sum_{i=1}^{n} P_{G_i} - P_L = 0.$ (c) $\sum_{i=1}^{n} P_{G_i} - P_D = 0.$	(b) $\sum_{i=1}^{n} P_{G_i} - P_D = P_L + P_G.$ (d) $\sum_{i=1}^{n} P_{G_i} - P_L = P_D.$								
	(c) $\sum_{i=1}^{n} P_{\mathbf{G}_{i}} - P_{\mathbf{D}} = 0.$	(d) $\sum_{i=1}^{n} P_{G_i} - P_L = P_D.$								
9.	State estimation scheme uses	CO5-								
	(a) Lagrangian function method	(b) Negative gradient method								
	(c) Lyapunov method	(d) Weighted least square method								
10.	If the normal system fails to pass any one of the contingency tests, it is CO5- R declared to be									
	(a) Steady state secure	(b) Steady state insecure								
	(c) Transient state secure	(d)Transient state insecure.								
PART - B (5 x 2 = 10 Marks)										
11.	. What decides the loading of generating stations?									
12.	Differentiate between static and dynamic response of an ALFC loop.									
13.	. Draw the phasor diagram of a static VAR compensator.									
14.	. Comparison between unit commitment and economic dispatch									
15.	What is Energy Management System ? What are the major functions of it?									
	PART - C (2)	5 x 16= 80Marks)								
16.	 (a) (i) State the need for load forecasting how loads are forecasted for a ty any one technique. 		(8)							
	(ii) Draw the load curve and load dur	(ii) Draw the load curve and load duration curve for a sample CO1-App								
	power system and explain the importance of these curves									
	for economic operation of power system.									

Or

- (b) A diesel station supplies the following loads to various CO1- App (16) consumers: Industrial consumer = 1500 kW. Commercial Establishment = 750 kW, Domestic power = 100 kW, Domestic light = 450 kW. If the maximum demand on the station is 2500 kW and the number of kWh generated per year is 45×10^6 , determine (i). Diversity factor (ii). Annual load factor.
- 17. (a) Derive the transfer function of an uncontrolled load frequency CO2- App (16) control of a single area power system and derive the expression for static error following a step load change.

Or

- (b) Develop a transfer function of the speed governing mechanism CO2- App (16) and sketch a block diagram. What are the components of speed governor system of an alternator? Explain in detail.
- 18. (a) Describe the following methods of voltage control. CO3- Ana (16)
 (i) Tap changing transformer.
 (ii) Secondary voltage control STATCOM.

Or

(b) (i) Derive the relations between voltage, power and reactive CO3- Ana (8) power at a node for applications in power system control.

(ii) Discuss in detail about the generation and absorption of CO3- Ana (8) reactive power

(a) (i) Explain how the forward dynamic programming solution is CO4 -U (8) applied in unit's commitment problem describe by using flow chart.
(ii) Illustrate the λ- iteration method for finding the solution of CO4 -U (8) economic dispatch without transmission losses with a neat flow chart.

Or

(b) The fuel cost of two generating units are given by, CO4-Ana (16) $F_1 = 1.6 + 25 P_{G1} + 0.1 P_{G1}^2 Rs / hr.$ $F_2 = 2.1 + 32 P_{G2} + 0.1 P_{G2}^2 Rs / hr.$ If the total demand on the generators is 250 MW, Calculate the economic load scheduling of the two units. 20. (a) Draw and explain the state transition diagram showing various CO5-U (16) state transitions and control strategies for secure operation of a typical power system.

Or

(b) Illustrate the different function that are performed by the CO5-U (16) SCADA system.