,	\
	•
Γ	•

Question Paper Code: 52004

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Second Semester

Electrical and Electronics Engineering

15UPH204 – SOLID STATE PHYSICS

(Common to EIE and Biomedical Engineering)

		(Regulatio	n 2015)		
Dura	ation: Three hours	Answer ALL	Questions	Maximum: 100	Marks
		PART A - (10 x			
		PAK1 A - (10 X	1 - 10 ivialks		
1.		acquired by the free aring the application of			CO1- R
	(a) terminal velocity	(b) drift velocity	(c) escape velocity	(d) critical velo	city
2.	The magnitude of Lor	rentz number is			CO1- R
	(a) 2.44 X 10 ⁻⁸		(b) $2.44 \times 10^{-8} \text{ W } \Omega$	2 K	
	(c) $2.44 \times 10^{-8} \text{ W } \Omega \text{ K}^{-2}$		(d) $2.44 \times 10^{-6} \text{ W } \Omega \text{ K}^{-2}$		
3.	Silicon is	_valent element.			CO2- R
	(a) penta	(b) hexa	(c) tri	(d) tetra	
4.	P – type semiconduction a pure germanium of	tor is formed by addin crystal.	g imp	ourity	CO2- R
	(a) divalent	(b) trivalent	(c) tetravalent	(d) pentav	alent
5.	Diamagnetic material	possess			CO3- R
	(a) no induced dipoles even when external field is applied				
	(b) induced dipoles al	ong field direction			
	(c) permanent magnet	tic dipoles			

(d) absence of permanent magnetic dipoles

6.	Below transition temperature a super conducting material exhibits				CO	03- R	
	(a) zero resistance		(b) zero resistance and dian	magneti	sm		
	(c) z	ero resistance and paramagnetism (d) zero resistance and ferromagnetism			etism		
7.	The	unit for permittivi	ity of free space is			CO	04- R
	(a) c	dimensionless	(b) H / m	(c) m / H	(d) tesl	a	
8.	The	main constituents	of ceramics are			CO	04- R
	(a) s	silicon only		(b) non –metallic solids on	ly		
	(c) s	silicon - non metal	lic solids	(d) silicon and ferrous allo	ys		
9.	In n	anomaterials with	decrease of size the in	ter atomic spacing		CO	05- R
	(a) c	decreases		(b) increases			
	(c) f	first increases and	then decreases	(d) remains unchanged			
10.	The	The following is an example for bottom-up fabrication of nanoparticles CO5- F)5- R	
	(a) s	sol-gel method	(b) ball milling	(c) nanolithography (d)) photol	ithogr	aphy
			PART - B (5 x)	2= 10 Marks)			
11.	elec	electrical conductron density is 8.5 ass of the electron	$\rm X~10^{28}/m^3$. Compute	0 K is $4.8 \times 10^7 / \Omega$ m and the mean free collision time	d free	CO1-	App
12.	Differentiate between elemental and compound semiconductors. CO2- A				Ana		
13.	The energy product is an important parameter in designing the permanent CO3- An magnets. Reason out.					Ana	
14.	. Infer the significance of Clausius – Mosotti relation.			CO4-	R		
15.	Rec	ognize two proper	ties of nanomaterials.			CO5-	R
			PART - C (5	x 16= 80Marks)			
16.	(a)	• • • • • • • • • • • • • • • • • • • •	postulates of classical ematical expression fo	free electron theory, or electrical conductivity of	CO1-	U	(12)
			e-merits of classical fro	ee electron theory	CO1-	U	(4)
			Or				
	(b)	(i) With necessar energy states	ry theory, deduce the ex	xpression for density of	CO1-	U	(12)
		(ii) Using the cla	ssical expressions, ver	ify Wiedemann – Franz law	CO1-	U	(4)

17.	(a)	Mathematically show that for an intrinsic semiconductor the Fermi level is located exactly at the mid-point of the energy gap	CO2 U	(16)
		Or		
	(b)	Based on Hall effect, show that the Hall coefficient is positive for a P-type semiconductor. Also prove that the Hall coefficient is negative for N-type semiconductor.	CO2 U	(16)
18.	(a)	(i) Distinguish between para and ferromagnetic materials.	CO3- Ana	(8)
		(ii) Compare and contrast the hard and soft magnetic materials.	CO3- Ana	(8)
		Or		
	(b)	(i) Distinguish between Type – I & II superconductors.	CO3- Ana	(8)
		(ii) Explain any four properties of super conductors.	CO3- Ana	(8)
19.	(a)	(i) Compute the internal field for a cubic crystalline structure	CO4- U	(10)
		(ii) Abstract the frequency and temperature dependence of polarization	CO4- U	(6)
		Or		
	(b)	(i) Classify the three types of ceramic materials.	CO4- U	(8)
		(ii) Explain the manufacturing of a ceramic material by slip casting method.	CO4- U	(8)
20.	(a)	Explain the fabrication of nanoparticles by physical and chemical vapor deposition techniques.	CO5- U	(16)
	(b)	Or (i) Illustrate the synthesis of nanomaterials by ball milling technique	CO5- U	(10)
		(ii) List six applications of nanomaterials.	CO5- U	(6)