A
\boldsymbol{A}
▲ ▲

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 52308

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Second Semester

Civil Engineering

15UEE208 - BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to Mechanical Engineering, Chemical and Agriculture Engineering)

		(Regulatio	on 2015)					
Dur	ation: Three hours		Ma	aximum: 100 M	arks			
		Answer ALI	Questions					
		PART A - (10 x	1 = 10 Marks)					
1.	1. Three resistances of 10 Ω , 15 Ω and 30 Ω are connected in parallel the total resistance of the combination is							
	(a) 5 Ω	(b) 10 Ω	(c) 15 Ω	(d) 55 Ω				
2.	All the rules and la containing	ws of DC circuit als	so apply to AC circuit		CO1- R			
	(a) Capacitance only	(b) Inductance only	(c) Resistance only	(d) all above				
3.	The field coils of DC		CO2- R					
	(a) Mica	(b) Copper	(c) Cast iron	(d) Carbon				
4.	What will happen if the	he back Emf of a DC n	notor vanishes suddenly?		CO2-U			
(a) The motor will stop			(b) The motor will continues to run					
	(c) The armature may	burn	(d) The motor will run					
5.	In "p" type material, i	minority carriers would	l be:		CO3- R			
	(a) Holes	(b) Dopants	(c) Slower	(d) Electrons				

(c) Theta

CO3-R

(d) Beta

A current ratio of $I_{\text{C}}/I_{\text{E}}$ is usually less than one and is called:

(b) Alpha

(a) Omega

7. Convert 10101101₂ to decimal number

CO4-R

(a) 172

- (b) 173
- (c) 174

(d) 175

8. Among the following which one is universal gate

CO4-R

- (a) NOT
- (b) NAND
- (c) AND

- (d) OR
- 9. In case of amplitude modulation if modulation index > 1 then

CO5-R

- (a) There will be interference with another signal
- (b) The bandwidth will decrease
- (c) The wave will get distorted
- (d) The efficiency of transmission will improve.
- 10. India's first three-axis stabilized geostationary communication satellite is

CO5-R

- (a) Rohini
- (b) Aryabhatta
- (c)Apple

(d) Bhaskara

$$PART - B$$
 (5 x 2= 10 Marks)

11. Define power and power factor in AC circuits

CO1- R

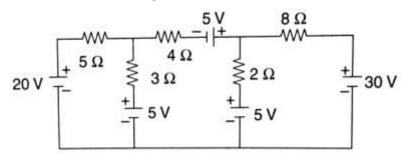
12. Mention the various types of single phase induction motor

CO2- R

13. List the biasing techniques for transistor.

CO3-R

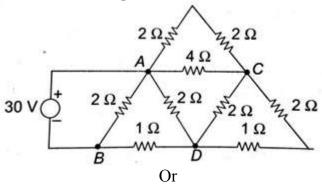
14. Prove that $A + \bar{A} B = A + B$


CO4-App

15. Compare analog and digital signals

CO5-Ana

$$PART - C (5 \times 16 = 80 \text{ Marks})$$


16. (a) (i) Determine the current flow through 2 Ω resistor and voltage CO1- App across 8 Ω resistors in given circuit.

(a) (ii) Determine the total equivalent resistance for the circuit

(8)

(b) Derive an expression for RMS value and average value of a sinusoidal waveform.

CO1- App

(16)

17. (a) Describe with neat sketch construction and working of single CO2-U (16) phase transformer.

Or

- (b) With neat sketch explain construction and working of moving CO2- U (16) coil instruments.
- 18. (a) Draw and explain common base configuration of BJT and its CO3- Ana (16) charactertics.

Or

- (b) Describe the principle of working of forward based PN junction CO3- Ana (16) diode and it's charactertics.
- 19. (a) (i) Convert the Boolean expression $A\overline{B}C + \overline{B}CD + A\overline{C}D$ to CO4- U (8) standard SOP form.
 - (ii) State and prove Demorgan's theorem.

CO4- U

(8)

Or

- (b) (i) Simplify the Boolean expression using laws and rules of CO4-U (8) Boolean algebra $Z = [A\bar{B}(C + BD) + (\bar{A}\bar{B})C]$
 - (ii) Implement the expression using logic gates

CO4- U

(8)

- (a) AB+BCD+EFGH
- (b) (A+B)(F+G+H+I)

20. (a) With neat diagram explain amplitude modulation and frequency CO5- U modulation. (16)

Or

- (b) With neat block diagram explain the operation of the following CO5-U (16)
 - (i) Satellite communication systems
 - (ii) Optical fibre communication systems