Α	Reg. No. :						
	Question Paper	Code:	54303				
B.E. / B	.Tech. DEGREE EXA	MINAT	ION, AP	RIL 201	9		
	Fourth Se	emester					
	Electrical and Electronic	onics En	gineering	- -			
	15UEE403- CONT	ROL SY	STEMS				
	(Regulatio	on 2015)					
Duration: Three hours				Ν	laxim	um: 10	0 Marks
	Answer ALL	Question	ns				
	PART A - (10 x	1 = 10 M	larks)				
1 The output of the feedb	ack control system m	ust he a f	inction o	f			CO1-1

1.	The output of the feedback control	CO1- U			
	(a) Reference input	(b) Re	ference o	utput	
	(c) Output and feedback signal	(d) Inp	out and fe	edback signal	
2.	The overall transfer function from	block d	iagram re	CO1-U	
	blocks is given by				
	(a) Sum of individual gain	(b) Pro	oduct of i		
	(c) Difference of individual gain	(d) Di	vision of		
3.	The steady state error in closed loc	CO2 -U			
	(a) Zero	(b) Un	ity	(c) Infinity	(d) Unpredictable
4.	Root locus is used to calculate				CO2 -R
	(a) Marginal stability	(b) Ab	solute sta	bility	
	(c) Conditional stability	(d) Re	lative stal	bility	
5.	The unit adopted for magnitude m	leasuren	nent in Bo	ode plots is	CO3-R
	(a) Degree	(b) De	cimal	(c) Decibel	(d) Deviation
6.	Lead compensator network is used	l to impr	ove		CO3-R
	(a) Transient response.		(b) Band	lwidth.	
	(c) Transient response and bandwi	dth	(d) Stead	ly state response	
7.	For Nyquist contour, the size of ra-	dius is			CO4-R
	(a) Zero	(b) Un	ity	(c) Infinity	(d) Constant

8.	The no. of roots of $S3 + 5S2 + 7S + 3 = 0$, in the right half of the s-plane is						
	(a) 0	(b) 1	(c) 2	(d) 3			
9.	State space analysis is applicable e	te space analysis is applicable even if the initial conditions are CO5- U					
	(a) Zero	(b) Non-zero	(c) Equal	(d) Not equal			
10.	Kalman's test is for			CO5 -R			
	(a) Observability	(b) Controllability					
	(c) Optimality	(d) Observability and controllability					
	PART - B (5 x 2 = 10 Marks)						
11.	Compare open loop and closed loo	n.	CO1- U				
12.	Mention the different time domain	f the system.	CO2- R				
13.	Give the advantages of frequency domain analysis.			CO3- R			
14.	State the criterion for Nyquist stab	CO4- R					
15.	Differentiate SISO systems and M	CO5-U					

PART – C (5 x 16= 80 Marks)

16. (a) Determine the transfer function c(s)/r(s) of the system function CO1- App (16) shown using signal flow graph analysis.

Or

(b) Using block diagram reduction technique find closed loop transfer CO1- App (16) function C(s) / R(s).

17. (a) Derive the undamped response of a second order system for a unit CO2- App (16) step input.

Or

(b) For a unit feedback control system, the open loop transfer function CO2 -App (16) is given by

$$G(s) = \frac{10(s+2)}{s^2(s+1)}$$

- (i) Find the positional, velocity and acceleration error coefficients.
- (ii) Find steady state error when the input is

$$R(s) = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$$

18. (a) Sketch the bode plot for the following transfer function and CO3- App (16) determine phase margin and gain margin.

$$G(s) = \frac{10}{s(1+0.5s)(1+0.1s))}$$
Or

- (b) The open loop transfer function of a unity feedback system is CO3- App (16) given by $G(s) = \frac{1}{s(1+s)(1+2s)}$ Sketch the polar plot and determine gain margin and phase margin.
- 19. (a) The open loop transfer function of a unity feedback system is CO4- Ana (16) given by $G_o(s) = \frac{5}{s(s+1)(s+2)}$. Draw the Nyquist plot and check the system stability.

Or

- (b) (i) Using Routh criterion, determine the stability of the system CO4- Ana (8) represented by the characteristic equation. $s^{6} + 2s^{5} + 8s^{4} + 12s^{3} + 20s^{2} + 16s + 16 = 0$
 - (ii) Illustrate the usage of Nyquist plot in determining the stability CO4- Ana (8) of a closed loop system.
- 20. (a) The state model of the system is given by CO5- Ana (16)

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u;$$
$$y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

(i) Find the transfer function for the given state model.

(ii) Determine whether the system is completely controllable and observable.

(b) Obtain a state space model of the system with transfer function CO5- Ana (16)

$$\frac{Y(s)}{U(s)} = \frac{6}{s^3 + 6s^2 + 11s + 6}$$