A		Reg. No. :										
		Question Pa	apei	r Coo	le: 5	553()4					
	B.E	E. / B.Tech. DEGREE	- EXA	MINA	ATIO	N. A	PRI	l L 20	19			
		Fiftl	n Ser	nester		,						
		Electrical and E	lectro	onics]	Engir	neeri	ng					
		15UEE504-ELECTR	ICAI	L MA	CHIN	VE D	ESIC	GN				
		(Regu	latio	n 201:	5)							
Dur	ation: Three hours	-					N	Aaxi	mun	n: 100	Ma	arks
		Answer	ALL	Quest	tions							
		PART A - (1	0 x	1 = 10	Mar	ks)						
1.	Specific resistance of Aluminium is times that of Copper.								CO1			
	(a) 2	(b) 1.64		(c) ().64				(d) 0.82	2	
2.	What are the parameters which comes under the term "Main Dimensions"?								CO1			
	(a) Diameter	(b) Length		(c) I	Diam	eter a	and le	engtl	h	(d) Ar	ea	
3.	Gap contraction factor for slots and ducts are 1.15 and 1.09 respectively. Total gap contraction factor is								CO2-			
	(a) 1.1	(b) 1.09		(c)	1.25				((d) 0.9	95	
4.	How many electromagnets are commonly present?									CO2		
	(a) 2	(b) 3		(c) 4	ŀ					(d) 5		
5.	How is the circulation of oil improved in tanks with tubes?								CO3			
	(a) It can be improved by using dissipating heat											
	(b) It can be improved by using more effective air circulation											
	(c) It can be improved by using more effect power flow											
	(d) It can be impro	oved by using more eff	ectiv	ve hea	ds of	pres	sure					
6.	The type of coil preferred for Transformer iscoil									CO3		
	(a) Square	(b) Circular		(c) I	Elipti	cal			((d) Al	l th	ree ty

7.	What is the relation of closed slots with leakage reactance?					CO4- R			
	(a) Closed slots give no leakage reactance(b) Closed slots give h(c) Closed slots give low leakag e(d) Closed slots give h			(b) Closed slots give high l	h leakage reactance				
				(d) Closed slots give negat	kage				
8.	What is the formula for the full load ro			mf?	CO4- I				
	(a) 65% of stator mmf			(b) 75% of stator mmf					
	(c) 85% of stator mmf			(d) 90% of stator mmf					
9.	Sho	rt circuit ratio for	ally	CO5-					
	(a) (0.1 to 0.2	(b) 0.2 to 0.4	(c) 0.5 to 0.7	(d) 0.8 to 0.95				
10.	The function of damper winding in alternator is					CO5- Ana			
	(a) S	a) Stop Alternator (b) Increase voltage							
	(c) l	c) Increase hunting (d) Reduce hunting							
PART - B (5 x 2 = 10 Marks)									
11.	Def	ine Space factor.	CO1- R						
12.	Mention the factors governing the choice of number of armature slots in machine.					a dc CO2- Ana			
13.	Hov	v the heat dissipat	CO3- App						
14.	List the values of L / τ for different design requirements of an Induction motor.			CO4- U					
15.	Define Short Circuit Ratio				CO5- Ana				
			PART – C (5	x 16= 80 Marks)					
16.	(a)	(a) Illustrate the various duty types of Electrical machines with neat CO diagrams.			CO1	- U	(16)		
	(b)	Explain the choir electrical machin	ce of specific magnetic nes.	c loading for rotating	CO1	CO1-Ana			
17.	(a)	Derive an output equation for DC machine in terms of output coefficient. Also write the significance of output coefficient in the machine design.				-App	(16)		
	Or								
	(b)	Explain the varie	ous steps in the design	of armature winding of DC	CO2	-App	(16)		

18. (a) The tank of 1250 kVA natural oil cooled transformer has the CO3-App (16) dimensions length, width and height as $0.65 \times 1.55 \times 1.85$ m respectively. The load loss = 13.1 kW, loss dissipation due to radiations 6 W/m.sq – ⁰C. improvement in convection due to provision of tubes = 40%, temperature rise is 40 ^oC, length of each tube is 50 mm. Find the number of tubes for this transformer. Neglect the top and bottom surface of the tank as regards the cooling.

Or

- (b) Derive an expression to calculate number of cooling tubes required CO3-App (16) for a transformer tank. Write the significance of providing cooling tubes in transformer.
- 19. (a) Find the main dimension of a 15 kW, 3 phase, 400V, 50Hz, 2810 CO4-App (16) rpm squirrel cage induction motor having an efficiency of 0.88 and full load power factor of 0.9. Assume: Specific magnetic loading = 0.5 Wb/m² specific electric loading = 25000 ac/m. Take the rotor peripheral speed as approximately 20 m/s at synchronous speed.

Or

(b) Explain the design steps involved for squirrel cage rotor employed CO4-U (16) in three phase induction motor.

20. (a) Derive the output equation for a synchronous machine. CO5- App (16)

- Or
- (b) Determine the main dimension of stator core for an 8 pole alternat CO5-U (16) at 3300 KVA,A, 300V, 50 Hz. Assume specific electric loading to l 28000 ac/m and magnetic loading to be 0.6 Wb/m². Pole arc = 0.65 pole pitch. Assume square pole.