A		Reg. No. :								
	[Question Pa	per Co	de: 593	376A					
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019										
Open elective										
Civil Engineering										
15UEE976 - APPLIED SOFT COMPUTING										
(Common to CSE, ECE, MECH, EIE, IT and Chemical Engineering branches)										
(Regulation 2015)										
Duration: Three hours			Maximum: 100 Marks							
	Answer ALL Questions									
PART A - (10 x 1 = 10 Marks)										
1.	Which AI system will continue to analyze a problem until it finds the best solution?							CO1- R		
	(a) Intelligent agent	(b) Neural network								
	(c) Genetic algorithm		(d) Expe	ert syster	n					
2.	2. What is Artificial intelligence?							CO1- R		
	(a) Putting your intelligence into Computer									
	(b) Programming with your own intelligence									
	(c) Making a Machine intelligent									
	(d) Putting more memory into Computer									
3.	Artificial neural networ	k used for							CO2- R	
	(a) Pattern recognition	(b) Classification	n (c)	Clusterii	ng	(d) A	All of	these	e	
4.	In an Unsupervised lear	rning							CO2- R	
	(a) Specific output valu	les are given	(b) Spec	ific outp	out valu	es are n	ot giv	ven		
	(c) No specific Inputs are given			(d) Both inputs and outputs are given						
5.	Where are Genetic Alg	orithms applicable	?						CO3- R	

(a) Real time application (b) Biology (c) Artificial Life (d) All the above

6.	All of the following are suitable problems for genetic algorithms EXCEPT	CO3- R									
	(a) Dynamic process control										
	(b) Pattern recognition with complex patterns										
	(c) Simulation of biological models										
	(d) Simple optimization with few variables										
7.	There are also other operators, more linguistic in nature, calledCO4- Rnat can be applied to fuzzy set theory.CO4- R										
	(a) Hedges (b) Lingual Variable (c) Fuzz Variable (d) None of the mentioned										
8.	There are also other operators, more linguistic in nature, called	CO4- R									
	(a) Hedges (b) Lingual Variable (c) Fuzz Variable (d) None of the mentioned										
9.	Fuzzy logic controllers are based on C										
	(a) Heuristics (b) Linear variables (c) Non-linear variables (d) None of the a	above									
10.	Which of the following is an application of NN (Neural Network)? CO5-F										
	(a) Sales forecasting (b) Data validation										
	(c) Risk management (d) All of the mentioned										
	PART - B (5 x 2= 10 Marks)										
11.	Define knowledge representation CO	CO1- R									
12.	Define bias and threshold										
13.	Mention the role of fitness function in genetic algorithm and what are the CO3- U requirement of genetic algorithm										
14.	What are the basic elements of a fuzzy logic control system?										
15.	What do you mean by hybrid system? CO	CO5- U									
PART – C (5 x 16= 80 Marks)											
16.	(a) With a neat block diagram explain the architecture of an CO1-U Intelligence Control	(16)									
	Or COLUMN (10)										
	Explain in detail about the rule based expert system CO1- U										

17. (a) Demonstrate AND function using Hebb net with Bipolar inputs CO2-Ana (16) and targets

Or

- (b) Demonstrate error back propagation training algorithm with the CO2-Ana (16) help of a flowchart.
- 18. (a) With neat flow charts, explain the concepts of Tabu search. CO3- U (16) Or
 - (b) Describe the Ant Colony optimization technique with flow chart. CO3- U (16)
- 19. (a) Build the Fuzzy Logic Controller using basic components and CO4- App (16) explain with neat diagram
 - Or
 - (b) Let us consider the discrete fuzzy set, using Zadeh's notation, CO4- Ana (16) defined on universe

X={a, b, c, d, e, f}, $\tilde{A} = \left\{\frac{1}{a} + \frac{0.9}{b} + \frac{0.6}{c} + \frac{0.3}{d} + \frac{0.01}{e} + \frac{0}{f}\right\}.$

Reduce this fuzzy set into several λ -cut sets, all of which are crisp.. For example, define λ -cut sets for the values of $\lambda = 1, 0.9, 0.6, 0.3, 0^+$, and 0.

20. (a) Explain the application of Genetic Algorithm to ecenomic CO5- App (16) dispatch problem

Or

(b) Briefly explain the neural network toolbox in MATLAB. CO5- App (16)