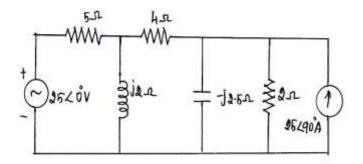
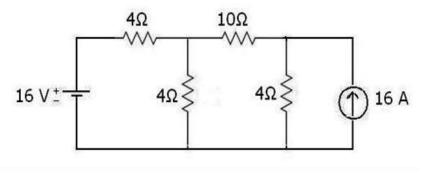

С	Reg. No. :										
Question Paper Code: 53403											
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019											
Third Semester											
Electronics and Communication Engineering											
15UEC303 - CIRCUIT THEORY											
(Regulation 2015)											
Duration: Three hours Maximum: 100 Marks										larks	
Answer ALL Questions											
PART A - $(5 \times 1 = 5 \text{ Marks})$											
1.	The number of branches in a tree is graph.		tł	ne ni	ımbe	er of	bran	ches	in a	a CO	D1- R
	(a) less than (b) more than (c)	equ) equ	al to		(d) tw	vice				
2.	Three equal resistances of 3Ω are connected in star. What is the resistance in CO2- U one of the arms in an equivalent delta circuit?										
	(a) 10Ω (b) 3Ω (c)	:) 9 Ω				(d)	27 Ω	2			
3.	In a series <i>RLC</i> circuit that is operating above the resonant frequency, the CO3-U current										
	(a) Lags the applied voltage (b) leads the applied voltage										
	(c) is in phase with the applied voltage (d) is zero										
4.	When a series RC circuit is connected to a constant voltage at $t = 0$, the CO4-R current passing through the circuit at $t = 0^+$ is										CO4-R
	(a) infinite (b) zero (d	infinite (b) zero (c) V/R							(d) $V/\omega C$		
5.	Two coils connected in series have an equivalent inductance of 3H when CO5-R connected in aiding. If the self- inductance of the first coil is 1 H, what is the self inductance of the second coil? (Assume $M = 0.5$ H)										
	(a) 1 H (b) 2 H	(c)	3 H				(d) 4 H	[
PART - B (5 x 3 = 15 Marks)											
6.	State Kirchoff's circuital laws.								С	01-	R
7.	State Tellegen's theorem								С	02-	R
8.	Draw the pole zero diagram for $Z(s) = \frac{4(s+2)s}{(s+1)(s+3)}.$	the	give	en i	netwo	ork	funo	ction	, C	03-	U

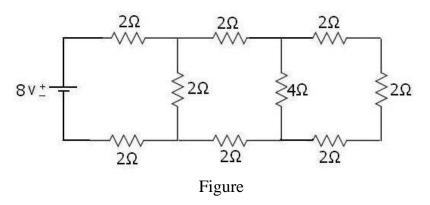

- 9. Define Z_{22} and Z_{21} .
- 10. Three identical loads are connected in delta to a three-phase supply of CO5- R $440 \angle 0^{\circ} V$. If the phase current I_R is $15 \angle 0^{\circ} A$, calculate the three line currents.

11. (a) Find v_0 if input voltage Vg=32 V using Supermesh analysis CO1-App (16) for the circuit given in Figure 5.



Or

(b) Using nodal analysis, find the current through the 4 ohm CO1-App (16) resistor in the circuit shown in figure.



12. (a) Find the current through 10 Ω resistance in the network CO2- App (16) shown in Figure by using superposition theorem?

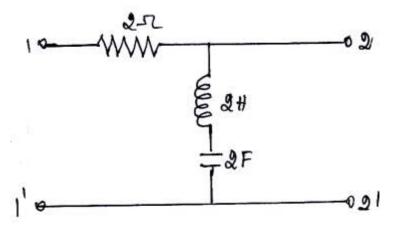
Or

(b) Find-out the value of current in 4Ω resistance for the network CO2- App (16) in Figure by using Norton's Theorem?

- 13. (a) A series RLC circuit consists of a resistance of $1K\Omega$ and an CO3-U (16) inductance of 100mH in series with capacitance of 10pF. If 100V is applied as input, determine
 - The resonant frequency
 - Maximum current in the circuit
 - Q factor of the circuit

The half power frequencies

Or


(b) (i) A series RLC network should resonate at 1MHz. CO3-U (10) Determine R,L and C if bandwidth is 5KHz and impedance is 50Ω at resonance.

(ii) A current source is applied to a parallel combination of CO3- App (6) R,L and C,where R=10 Ω ,L=1H and C=1 μ f.

- (a) Compute the resonant frequency.
- (b) Find the quality factor.
- (c) Calculate the value of the bandwidth.
- 14. (a) A series circuit consists of R-C in series with switch and CO4-E (16) supply voltage E. The capacitor has initial charge E0. Find the transient voltage VC (t) when the switch is closed at t=0.

Or

(b) Determine the admittance parameters of the two port CO4-App (16) network shown.

15. (a) Derive the expression for the resonant condition in single CO5-U (16) tuned and double tuned circuits.

Or

(i) A three phase balanced delta connected load of (4.3+j7) Ω CO5- App (10) is connected across a 400V, 3- phase balanced supply. Determine the phase currents and line currents. Assume RYB sequence. Calculate the complex power drawn by the load.

(ii) Three line voltages of a 3-phase unbalanced source are CO5- App (6) Vab=40V, Vbc=-j40 V and Vca=-40+j40 V .the source is connected to star connected impedance. Za= $(3+j4) \Omega$, Zb= $(8+j6) \Omega$ and Zc= $(5+0j) \Omega$. Determine the currents Ia, Ib ,Ic