С		Reg. No. :										
	Question Paper Code: 56402											
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019												
Sixth Semester												
Electronics and Communication Engineering												
15UEC602–ANTENNA AND WAVE PROPAGATION (Regulation 2015)												
Dura	ation: Three hours				I	Maxii	num	: 100) Ma	rks		
Answer ALL Questions												
PART A - $(5 \times 1 = 5 \text{ Marks})$												
1.	The line – of – sig antennas to face each for best reception the	ht communication r n other. If the transm receiver antenna sho	equire nit and uld be	s the	trans is ver	mit a ticall p	and i y po olariz	recei lariz zed.	ve ed		СО	1- R
	(a) Vertically											
	(b) Horizontally											
	(c) At 45 degree inclined with either horizontally or vertically											
	(d) None of above											
2.	The radiation resistant radiation resistance of	ce of a circular loop f five turns of such a	of one loop w	turn vill b	is 0.01 e	Ι <u>Ω</u> . Τ	he				CO	2- R
	(a) 0.002Ω	0.002Ω (b) 0.05Ω (c) 0.01Ω							(d) 0.25Ω			
3.	Which conversion me	echanism is performe	d by p	arabo	olic ref	lecto	r ant	enna	?		CO3	- R
	(a) Spherical to plane	(b) Spherical to	Polar	(c) Plai	ne to	Pola	r ((d) N	lone		
4.	How do the element antenna	ts of an active reg	gion b	ehav	e in l	og po	eriod	lic			CO4	1- R
	(a) Capacitive	Capacitive (b) Inductive (c) Resistive (d)							(d) R	Reflective		
5.	F ₂ layer of appleton frequency radi	region acts as a sign o waves.	ificant	refle	ecting	medi	um f	òr			CO	5- R

(a) Low (b) Moderate (c) High (d) All Frequency

 $PART - B (5 \times 3 = 15 \text{ Marks})$

- 6. Define effective aperture of the antenna and relate the gain with effective CO1-U aperture.
- 7. Calculate the efficiency of a dipole with a radiation resistance of 68Ω and a CO2- App total feed point resistance of 75 Ω .
- 8. State field equivalence principle and list the usage. CO3- U
- 9. Draw the structure of 3 element yagi uda antenna and give the dimensions CO4- R and spacing between elements in terms of wavelength.
- 10. Define critical frequency, Find the critical frequency of an ionosphere layer CO5- App which has an electron density of 1.24×10^6 cm⁻³.

11. (a) (i) Two antennas each with a gain of 1.64 are horizontally CO1- App (10) separated by a distance of 100 km to and from transmitter-receiver link. The transmitter feeds its antenna with 10W at 100MHz. Calculate the power received by the antenna.

(ii) The power radiated by a lossless antenna is 10 watts. The CO1- App (6) directional characteristics of the antenna are represented by the radiation intensity of U=B₀cos3θ (watts/unit solid angle) (0≤θ≤π/2, 0≤φ≤2π) Find the
(a) Maximum power density (in watts/square meter) at a distance of 1,000 m (assume far-field distance). Specify the angle where this occurs.
(b) Exact and approximate beam solid angle ΩA

Or

CO1-U (16)

- (a) Half Power beam width,
 - (b) Polarization,

(b) Write short notes on

(c) Directivity,

- (d) Principal patterns.
- 12. (a) From the Maxwell's equation derive the field expressions of the CO2- App (16) field quantities radiated from a $\lambda/2$ dipole and prove that the radiation resistance is 73 Ω .
 - Or

- (b) (i)Derive the expression for the array factor of a linear array of 4 CO₂- App (10)isotropic element spaced $\lambda/2$ apart fed with signals of equal amplitude and phase. Obtain the directions of maxima and minima. CO₂- Ana (ii) Discuss the significance of binomial array (6)13. (a) Discuss the significance of F/D ratio and the geometry of a CO3-U (16)parabolic reflector along with its feed configurations. Or (b) (i) A pyramidal horn with aperture length of 10λ cm is fed by a CO3-U (10)rectangular waveguide in TE_{10} mode. Determine the design parameters of the antenna operating at 2.5GHz. (ii) Discuss in detail about radiation mechanism of slot antenna. CO3- U (6) 14. (a) (i) Describe the modes of operation of helical antenna with design CO4-U (10)equations. (ii) Explain the procedure for the measurement of gain. CO4- U (6)Or (b) Design a log periodic antenna to cover all the VHF TV channels CO4- App (16)from 55 MHz to 220MHz. The required directivity is 9 dB and input impedance is 50Ω . The elements should be made of aluminum tubing with 2 cm outside diameters for the largest element and the feeder line and 0.48 cm for the smallest elements. These diameters yield identical (I/d) ratios for smallest and largest elements. (i) Draw the electron density profile chart of an ionosphere and CO5-U 15. (a) (10)explain the ionosphere propagation.
 - (ii) Explain Troposcatter propagation. CO5- U (6)
 - Or

(b)	Write short notes on	CO5- U	(8)
	(i) Effect of earth magnetic field		
	(ii) Faraday's Rotation	CO5- U	(4)
	(iii) Skip Distance	CO5- U	(4)