С		Reg. No. :											
Question Paper Code: 54404													
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019													
Fourth Semester													
Electronics and Communication Engineering													
15UEC404- SIGNALS AND SYSTEMS													
(Regulation 2015)													
Dura	ation: Three hours								Max	ximu	ım: 1	00 N	/larks
Answer ALL Questions													
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	The period of the function $\cos \frac{\pi}{4} (t-1)$ is											C	01 - R
	(a) $\frac{1}{8}s$	(b) 8 <i>s</i>			(c) 4 <i>s</i>					($d)\frac{1}{4}$	5
2.	The Fourier series of an odd periodic function contains CO2-1												02 - R
	(a) Odd harmonics only	Odd harmonics only			(b) Even harmonics only								
	(c) Sine harmonics only		(d) Cosine harmonics on								ly		
3.	The inverse Laplace transform of								C	03- R			
	-a s(s - a)												
	(a) e^{at}	(b)- <i>e</i> ^{<i>at</i>}			(c)1 -	e^{at}				(d)-1	$+ e^{at}$
4.	The F.T. of a conjugate symmetric function is always CO4- F											04- R	
	(a) Imaginary	(b) Real	(c) Co	onjuga	ite ui	nsym	imeti	ric	(d) syn	nmet	ric	Con	jugate
5.	The ROC of sequence in	the Z.T. of seque	nce x[n] = a	ⁿ U [[<i>n</i>] is						C	05- R
	(a) $z > a$	(b) <i>z</i> < <i>a</i>			(c) z	> a				(d) z	> a

PART – B (5 x 3= 15 Marks)

6. Determine whether the signal, x(t) = sin 3n is periodic.
7. What is the difference between tabulation and graphical methods?
CO2- R

- 8. What are the applications of the Laplace transform? CO3- R
- 9. Differentiate convolution and multiplication property.
- 10. Find the DTFT (Discrete time Fourier transform) of $x[n] = a^n \cup [n]$ for -1 < a < +1 CO5- R

11. (a) (i) Explain the classification of signals with examples CO1- U (6)

(ii) Determine whether the systems described by the following CO1- App (10) input – output equation are linear, dynamic and casual.

y(t) = x(t-3)+(3-t)

$$\mathbf{y}(\mathbf{n}) = \mathbf{n}\mathbf{x}(\mathbf{n}) + \mathbf{b}\mathbf{x}^{2}(\mathbf{n})$$

Or

- (b) (i) What are the mathematical operations that can be performed on CO1 App (8) discrete time signals?
 - (ii) Determine whether the following systems are time invariant or not. CO1 App (8)
 - 1. y(t)=2tx(t),
 - 2. $y(t) = x(t) \sin 20\pi t$
- 12. (a) (i) Determine the response of the LTI system whose input x(n) and CO2- App (8) impulse response h(n) are given by x(n)={1,2,5,1} and h(n) = {1,2,1,-1}.

(ii) Determine the Fourier series representation of the half wave CO2-App (8) rectifier output.

CO4- R

(b) Determine the forced response of the system described by the CO2-App (16) equation

$$5\frac{dy(t)}{dt} + 10y(t) = 2x(t), for the input, (t) = 2u(t)$$

13. (a) Determine the Laplace transform of (a) $x(t) = e^{-at} \sin t u(t)$ (b) $x(t) = e^{-3t}u(t)$ (CO3- Ana (16)

Or

(b) Determine the inverse Laplace transform of CO3- Ana (16)

(a) X(s) =
$$\frac{2}{s(s+1)(s+2)}$$

(b) X(s) = $\frac{1}{(s+2)(1+s+s^2)}$

14. (a) State and prove sampling theorem for low pass band limited signal CO4- U (16) and explain the process of reconstruction of the signal from its samples

Or

- (b) (i) State and prove the Parseval's relation for discrete time Fourier CO4- U (8) transform.
 - (ii) Find the DTFT of the given periodic signal CO4- U (8)

 $x[n] = \cos \omega_0 n = \frac{1}{2} e^{j\omega_0 n} + \frac{1}{2} e^{-j\omega_0 n}$, with $\omega_0 = \frac{2\pi}{3}$,

- 15. (a) Determine the Z transform and ROC for the following discrete time CO5- Ana (16) signals
 - (i) $x(n) = 0.3^{n} u(n)$. (ii) $x(n) = 0.8^{n} u(-n-1)$

Or

(b) (i) Obtain the direct form-I realization for the system described by the CO5- Ana (8) difference equation,

 $(y(n) - \frac{1}{2}y(n-1) - \frac{1}{3}y(n-2) + \frac{1}{4}y(n-3) = x(n) + \frac{1}{5}x(n-1) + \frac{1}{6}x(n-2))$

(ii) Obtain the direct form-II realization for the system described the CO5- Ana (8) difference equation

$$\left(y(n) - \frac{1}{8}y(n-1) + \frac{1}{7}y(n-2)\frac{1}{6}y(n-3) = 2x(n) - \frac{1}{2}x(n-1) + \frac{1}{3}x(n-2) - \frac{1}{4}x(n-3)\right)$$