С		Reg. No. :											
		Ouestion Pape	r Co	ode	: 54	403	٦						
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019													
Fourth Semester													
Electronics and Communication Engineering													
		15UEC403–ELECTR (Regular	OM <i>i</i> tion 2	AGN 2015	ETIC	C FII	ELD	S					
Dur	ation: Three hours	Answer AI	LL Q	uest	ions	Ν	laxiı	num	: 100) Ma	rks		
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	The electric field intensity at a point situated 4 metres from a point CO1- R charge is 200 N/C. If the distance is reduced to 2 metres, the field intensity will be												
	(a) 400 N/C	(b) 600 N/C		(c) 8	00 N	[/C			(d) 1	200	N/C		
2.	The Biot-savart's la	e Biot-savart's law is a general modification of								CO	2- R		
	(a) Kirchhoff's law	(b) Lenz's law		(c) A	Ampe	ere's	law			(d) A	Ampo	ere's	law
3.	Which of the following is a ferromagnetic material? CO3-								3- R				
	(a) Tungsten	(b) Aluminium		(c)	Copp	er			(d) 1	Nick	el		
4.	The law that the induced e.m.f. and current always oppose the cause CO4- R producing them is due to							4- R					
	(a) Faraday	(b) Lenz		(c) N	Jewt	on			(d) (Coul	omb		
5.	Electromagnetic waves carry CO5-							5- R					
	(a) Positive charge	(b) Negative charge	(c)) No	char	ge	(d) Bo	th (a)) & (b)		
		PART – B (5	x 3=	15 1	Mark	s)		_					
6.	A point charge +2n0 P (1, 0, 0) m?	C is located at the origi	n. W	hat i	is the	valı	ie of	pote	ential	l at	CO)1- A	vpp
7.	For a current distrib A $\vec{=} (2x^2y+yz) \hat{a}_x+$	ution in free space, $(xy^2 - xz^3) \hat{a}_y - (6xyz - 2x^2)$	$(2^{2} y^{2})$	âz (V	Wb/m	ı).					CO)2- A	١pp
	Calculate magnetic	flux density.											

8.	Con	npare Poisson's and Laplace's equation.	CO3- U							
9.	Der	ive point form of Ampere's Circuital law.	CO4- U							
10.	Con	npare the skin depth of a conductor? How it is related to attenuation	CO5- U							
	cons									
11.	(a)	Obtain a formula for the electric field intensity on the axis of a Circular disc of radius 'b' and carries uniform charge density ' ρ '.	CO1- App	(16)						
Or										
	(b)	Determine the electric field intensity at P (-0.2, 0,-2.3) due to a point charge of +5nC at Q (0.2, 0.1,-2.5) in air. All dimensions are in meter.	CO1- App	(16)						
12.	(a)	Discuss about the forces and torques acting on a current carrying conductor in a uniform magnetic field.	CO2- App	(16)						
Or										
	(b)	Discuss about the forces and torques acting on a current carrying conductor in a uniform magnetic field.	CO2- App	(16)						
13.	(a)	Describe about magnetic boundary condition at the interface between two magnetic medium.	CO3- U	(16)						
Or										
	(b)	State about magnetization? Describe the classification of magnetic materials with examples.	CO3- U	(16)						
14.	(a)	State and explain the poynting theorem and derive the expression for poynting vector.	CO4- U	(16)						
Or										
	(b)	Illustrate the integral and point form of Maxwell's equations from Faraday's law and Ampere's law.	CO4- U	(16)						
15.	(a)	Examine the general expression of the attenuation and phase constant for conducting medium.	CO5- U	(16)						
		Or								
	(b)	Obtain the electromagnetic wave equation for free space in terms of electric field and magnetic field.	CO5- U	(16)						