С		Reg. No. :											
	Question Paper Code: 55401												
	B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019												
	Fifth Semester												
Electronics and Communication Engineering													
15UEC501 - DIGITAL SIGNAL PROCESSING													
(Regulation 2015)													
Dura	ation: Three hours					Μ	[axim	um:	100	Mar	ks		
	Answer ALL Questions												
		PART A - (5	x 1	= 5 1	Mark	s)							
1.	How many additions are	e required to comp	ute I	N poi	int D	FT						CO1-	-R
	(a) N log 2 N	(b) (N +1) log2N	((c) N	log2	(N=1)		((d) N	one	of thes	se
2.	How to define IIR filter	rs term as infinite:										CO2-	-R
	(a) As with any feedback device, create a loop, hence the term infinite.												
	(b) As with any non-feedback device, create a loop, hence the term infinite.												
	(c) As with any feedback device, create a open loop, hence the term infinite.												
	(d) None of above												
3.	Why FIR filter is alway	s stable										CO3-	-R
	(a) all poles will lie at the origin	(b) all poles will lie at the origin	e		^ .	oles v ght sid		e	(d)	Non	e of 1	these	
4.	What is scaling?											CO4	-R
	(a) Scaling must be done in such a way that no overflow occurs at the summing point												
	(b) Scaling must be don	e in such a way that	at ov	verflo	ow oo	ccurs	at the	e sui	nmii	ng po	oint		
	(c) Scaling must be don	e in such a way tha	at no	und	erflo	w oc	curs a	at th	e sur	nmir	ng po	oint.	
	(d) None of above												
5.	Instruction Pipelining of	rder of operations									C	CO5-Aj	pp
	(a) Fetch, Read, Decode	e, Execute		(b)]	Read	, Dec	code,	Fetc	ch, E	xecu	te		
	(c) Fetch, Decode, Read	,Execute		(d)]	Fetch	n, Rea	ad, Ez	xecu	te, D)eco	le		
$PART - B (5 \times 3 = 15 \text{ Marks})$													
6.	List the properties of D	FT and explain.										CO1-	-U

7.		at is bilinear transformation? What are the main advantages on nique?	of this CO	D2- R					
8.	Write the window function of Hamming window and Hanning window.								
9.	What is meant by zero limit cycle oscillations?								
10.	What is meant by pipelining?								
	PART – C (5 x 16= 80Marks)								
11.	(a)	An 8-point discrete time sequence is given by $x(n) = \{1,1,0,0,0,0,0,0\}$. Compute the 8-point DFT of $x(n)$ using DIT algorithm	CO1- App	(16)					
		Or							
	(b)	Find	CO1- App	(16)					
		y(n)=x(n)*h(n) for the sequences $x(n)=\{1,2,-1,2,3,-2,-3,-1,1,1,1,2,-1\}$ and $h(n)=\{1,2\}$. compare the result by solving the problem using overlap save method and overlap add method.							
12.	(a)	Design a digital Butterworth filter satisfying the constraints	CO2- App	(16)					
		$0.707 \le H(e^{j\omega}) \le 1 \qquad for 0 \le \omega \le \frac{\pi}{2}$							
		$H(e^{j\omega}) \le 0.2$ for $\frac{3\pi}{4} \le \omega \le \pi$							
	With T=1 sec, Use Bilinear transformation								
		Or							
	(b)	(i) For the analog transfer function	CO2- App	(8)					
		$H(s) = \frac{2}{(s+1)(s+2)}$							
		Determine H (z) using impulse invariant method. Assume T=1sec (ii) Obtain the cascade and parallel realization for the system	CO2- App	(8)					
		function given by	CO2 App	(0)					
		$H(z) = \frac{1+0.25Z^{-1}}{(1+0.5Z^{-1})(1+0.5Z^{-1}+0.25Z^{-2})}$							
13.	(a)	Design a HPF with the following frequency response $H_d(e^{j\omega})=1$ for $\pi/4 \le \omega \le \pi$ $=0$ for $ \omega \le \pi/4$ of length N=11 using Hamming Window Or	CO3- App	(16)					

Or

	(b)	(i) State and explain the properties of FIR filters. State their importance.	CO3- U	(8)
		(ii) Explain linear phase FIR structures. What are the advantages of such structures?	CO3- U	(8)
14.	(a)	Explain the characteristics of limit cycle oscillations with respect to the system described by the difference equation y(n)=0.95y (n-7)+x(n)	CO4- U	(16)
		With $x(n)=0$ and initial condition $y(-1)=12$. Determine the dead		
		band of the system.		
		Or		
	(b)	Study the limit cycle behavior of the system	CO4- App	(16)
		y (n)= $0.95y(n-1)+x(n)$, when the product is quantized by rounding		
		and five bit sign-magnitude binary representation is used.		
15.	(a)	Explain DSP building block, multipliers, shifters, MAC unit of a typical DSP processor.	CO5- U	(16)
		Or		
	(b)	(i) Explain the addressing modes of TMS320C5x with examples.	CO5- U	(8)
		(ii) Explain the operation of TDM serial ports in P-DSPs.	CO5- U	(8)