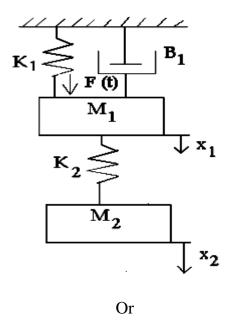
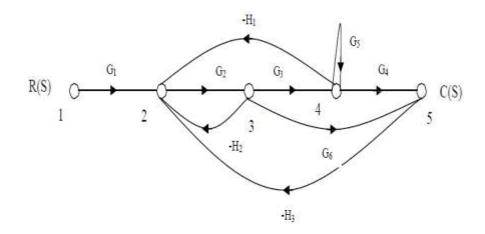
- /	•
H	•

Question Paper Code: 59404

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019


Elective

			Elective			
		Electronics and C	ommunication Engineering	g		
		15UEC904-LINEA	R CONTROL ENGINEER	ING		
		(Reg	gulation 2015)			
Duration: Three hours Maximum: 100			num: 100 Mark	S		
		Answe	r ALL Questions			
		PART A -	(10 x 1 = 10 Marks)			
1.	In closed loop control system, with positive value of feedback gain the overall gain of the system will		n the overall	CO1- R		
	(a)increase	(b)decrease	(c) be unaffected	(d)any of th	e above	
2.	The branch of a	signal flow graph repr	esents		CO1- R	
	(a)The system variable		(b) The functional rel	(b) The functional relations of the variables		
	(c) The system p	parameters	(d) None of the above	e		
3.	The impulse response of a first order system is			CO2-U		
	(a) Constant with respect to time					
	(b) Varies linearly with respect to time					
	(c) Exponentially increasing with respect to time					
(d)Exponentially decreasing with respect to time						
4.	A Second order system said to be critically damped if the damping factor is $\boldsymbol{\xi}$			CO2- R		
	(a) $\xi > 1$		(b) $\xi < 1$			
	(c) $\xi = 1$		(d) $\xi = 0.707$			
5.	By substituting $s=j\omega$, the frequency response plot gives			CO3-R		
	(a) Transient response of the system					
	(b) Steady state	response of the system	1			


(c) Initially transient and then steady state response

(d) None of the above

6.	The transfer function of a system is $G(S) = K / [S(S+1)(S^2+6S+8)]$. The order of system is		CO3-U		
	(a) 4	(b) 2			
	(c) 5	(d) 3			
7.	By using Routh's stability criterion it characteristic polynomial in	is possible to find the roots of the	CO4 R		
	(a) RHP only	(b) LHP only			
	(c) Imaginary axis only	(d) All the above three			
8.	The root loci are		CO4-U		
	(a) Straight lines	(b) Continuous curves			
	(c) Curves with discontinuity	(d) None of the above			
9.	State model representation is possible using				
	(a) Physical variables	(b)Phase variables			
	(c) Canonical state variables	(d) All of the above			
10.	O. The state-variable description of a linear autonomous system is Converged X=Ax Where x is a two-dimensional state vector and A is a matrix given by $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$ The poles of the system are located at				
	(a) -2 and $+2$ (b) $-2j$ and $+2j$	(c) -2 and -2 (d) +2 and +2			
	PART - B (5	x 2= 10Marks)			
11.	Define transfer function of the system.		CO1-R		
12.	. Write the effect of PI controller in a system?		CO2-U		
13.	6. What is compensator and writes its types?				
14.	What is Nyquist Stability Criterion?				
15.	What are advantages of state space analysis	s?	CO5- R		
	PART – C (5 x 16= 80 Marks)			
16.	(a) Find the transfer function $X_2(s) / F(s)$ shown in figure.	of the mechanical system CO1- App	(16)		

(b) Find the overall gain C(s) / R(s) for the signal flow graph shown CO1- App (16) below.

17. (a) Derive the unit step response of the second order system for the CO2-U under damped case. (16)

Or

- (b) A closed loop servo is represented by the differential equation CO2-App (16) $d^2c/dt^2 +8dc/dt = 64$ e Where c is the displacement of the output shaft r is the displacement of the input shaft and e= r-c. Determine undamped natural frequency, damping ratio and percentage maximum overshoot for unit step input.
- 18. (a) The open loop transfer function of a unity feedback system is CO3-App (16) G(S) = 1/S(1+S) (1+2S). Sketch the Polar plot and determine the Gain margin and Phase margin

Or

- (b) What is meant by lag compensator and write design steps of lag CO3-U (16) compensator using bode plot approach.
- 19. (a) (i) Construct Routh array and determine the stability of the CO4-App (10) system whose characteristic equation is

 $S^6+2S^5+8S^4+12S^3+20S^2+16S+16=0$. comment on location of the roots.

(ii) Construct Routh array and determine the stability of the CO4-App (6) system whose characteristic equation is

 $S^5+S^4+2S^3+2S^2+3S+5=0$.comment on location of the roots.

Or

- (b) Construct Routh array and determine the stability of the system CO4-Ana represented by the characteristics equation S⁷+9S⁶+24S⁴+24S³+24 S²+23S+15=0 comment on the location of the roots of characteristic equation.
- 20. (a) Construct a state model for a system characterized by the CO5-App (16) differential equation

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y + 4 = 0$$

Or

(b) (i) The state model of a system is given by

CO5-App (10)

$$\begin{bmatrix} \dot{X_1} \\ \dot{X_2} \\ \dot{X_3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} [u]; \quad Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

Determine whether the system is completely controllable and observable.

(ii) A linear time –invariant system is characterized by CO5-App (6) homogeneous state equation.

$$\begin{bmatrix} \ddot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Compute the solution of the homogeneous equation, assuming the initial state vector. $X0=\begin{bmatrix}1\\0\end{bmatrix}$