Reg. No.:					

Question Paper Code: 49403

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Elective

Electronics and Communication Engineering

14UEC903 - COMPUTER ARCHITECTURE AND ORGANIZATION

(Regulation 2014)

Duration: Three hours	Maximum: 100 Marks
-----------------------	--------------------

Answer ALL Questions

	Answer ALL Questions					
	PART A - $(10 \times 1 = 10 \text{ Marks})$					
1.	Floating point representation is used to store.					
	(a) Boolean values	(b) Whole number				
	(c) Real integer	(d) Integer				
2.	2. Floating point representation is used to store					
	(a) boolean values(c) real integers	(b) whole numbers(d) integers				
3.	. In computers, subtraction is generally carried out by					
	(a) 9's complement(c) 1's complement	(b) 10's complement(d) 2's complement				
4.	Pipeline implement					
	(a) fetch instruction(c) fetch operand	(b) decode instruction(d) calculate operand				
5.	CPU does not perform the operation	1				
	(a) data transfer(c) arithmetic operation	(b) logic operation(d) all the above				

6.	A micro program written as string of 0's and 1's is a						
	(a) symbolic mic(c) symbolic mic		•	(b) binary microinstruction(d) binary micro program			
7.	The techniques which called as	ch move the progra	am blocks to or from	n the physical me	emory is		
	(a) Paging(c) Overlays		(b) Virtual mem(d) Framing	ory organization			
8.	The associatively mapped virtual memory makes use of						
	(a) Translation L(c) Frame table	ook-aside Buffer	(b) Page table(d) None of thes	(b) Page table(d) None of these			
9.	Interrupts which are	initiated by an instru	action are				
	(a) internal	(b) external	(c) hardware	(d) software			
10.	The computer archite	ecture aimed at redu	cing the time of execu	ution of instruction	s is		
	(a) CISC	(b) RISC	(c) ISA	(d) ANNA			
		PART - B (5	x 2 = 10 Marks				
11.	Write the general for	mat for floating poin	nt numbers.				
12.	What is coprocessor	and what are the fur	nctions performed by	the coprocessor?			
13.	What is an instructio	n pipeline?					
14.	Explain virtual mem-	ory.					
15.	What is processor tir	ne of a program?					
		PART - C (5	x 16 = 80 Marks)				
16.	(a) Explain the diffe	erent types of addres	sing modes with suita	able examples.	(16)		
			Or				
	(b) With examples	explain the different	types of instruction f	ormat.	. (16)		

17.	(a) Explain how multiplication is carried out using Booth's algorithm. Extend it for floating point operation. What are the advantages of modified Booth's algorithm.	rithm?
	for floating point operation. What are the advantages of floatined booth's algo	(16)
	Or	` ,
(b)	Write short notes on	
	(i) Floating point arithmetic?	
	(ii) Modified booths algorithm	(16)
18.	(a) Explain in detail about instruction pipelining with flow chart.	(16)
	Or	
	(b) What is associate memory? Draw the block diagram of associate memory explain how the read and write operations performed in associated memory.	ry and (16)
19.	(a) Explain preemptive and non-preemptive memory allocation strategies in detail	. (16)
	Or	
	(b) Write short notes on multilevel memories and optical memories.	(16)
20.	(a) Explain the IOB organization and communication between CPU and IOB. Or	(16)
	(b) Explain the use of vectored interrupts in processors. Why is priority handling of in interrupt controllers? How do the different priority schemes work?	lesired (16)