Reg. No. :

## **Question Paper Code: 56503**

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Sixth Semester

Electronics and Instrumentation Engineering

15UEI603-PROCESS CONTROL

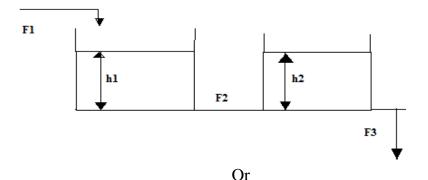
(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)


| 1. | Dead zone is the                                                                                                                                                                          |                                 |                                           | CO1- R                              |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|-------------------------------------|
|    | (a) Same as time co                                                                                                                                                                       | onstant                         | (b) Same as tr                            | ansportation lag                    |
|    | (c) Maximum change                                                                                                                                                                        | e in the variable that d        | oes not (d) None of th                    | ne above                            |
|    | change the readin                                                                                                                                                                         | ng of the instrument            |                                           |                                     |
| 2. | Thermocouple in a th                                                                                                                                                                      | ermal well behaves a            | s a true                                  | CO1- R                              |
|    | (a) first order system                                                                                                                                                                    |                                 | (b) multiple first                        | order system                        |
|    | (c) second order systemeter                                                                                                                                                               | em (overdamped)                 | (d) second order                          | system (underdamped)                |
| 3. | The standard measured indication range of a transducer is 4-20mA.CO2- AppIf we have a set point value of 11mA and a measurement of11.5mA,calculate the error expressed as percent of span |                                 |                                           |                                     |
|    | (a) -3.125%                                                                                                                                                                               | (b) 3.125%                      | (c) 31.25%                                | (d) -31.25%                         |
| 4. | controller is an example of discontinuous controller mode                                                                                                                                 |                                 | CO2- U                                    |                                     |
|    | (a) Proportional cont                                                                                                                                                                     | rol                             | (b) Integral control                      |                                     |
|    | (c) Derivative contro                                                                                                                                                                     | 1                               | (d) ON/OFF control                        |                                     |
| 5. | The equation of ITAE is                                                                                                                                                                   |                                 |                                           | CO3- U                              |
|    | (a) $\int_0^\infty  e(t)  dt$                                                                                                                                                             | (b) $\int_0^\infty t  e(t)  dt$ | (c) $\int_{-\infty}^{\infty} t  e(t)  dt$ | (d) $\int_{-\infty}^{\infty} t  dt$ |

| 6.                          | Use of <i>I</i> -control along with <i>P</i> -control facilitates           |                                     |        |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------|-------------------------------------|--------|--|--|--|
|                             | (a) elimination of offset                                                   | (b) reduction of offset             |        |  |  |  |
|                             | (c) reduction of stability time                                             | (d) none of these                   |        |  |  |  |
| 7.                          | The phenomenon of cavitation is related to                                  | CO4- R                              |        |  |  |  |
|                             | (a) Pascal law (b) Bernouli's theorem                                       | (c) Newton's law (d) Hooks la       | W      |  |  |  |
| 8.                          | In Electro-Pneumatic Direction control valves<br>by which of the following? | the actuation is done               | CO4- R |  |  |  |
|                             | (a) Lever (b) Push button                                                   | (c) Solenoid (d) Relay              |        |  |  |  |
| 9.                          | The control configuration with primary loop known as                        | and secondary loop is               | CO5- R |  |  |  |
|                             | (a) Cascade control                                                         | (b) Split range control             |        |  |  |  |
|                             | (c) Ratio control                                                           | (d) Feed forward control            |        |  |  |  |
| 10.                         | The control configuration with primary loop known as                        | and secondary loop is               | CO5- R |  |  |  |
|                             | (a) Cascade control                                                         | (b) Split range control             |        |  |  |  |
|                             | (c) Ratio control                                                           | (d) Feed forward control            |        |  |  |  |
| PART - B (5 x 2 = 10 Marks) |                                                                             |                                     |        |  |  |  |
| 11.                         | A self regulatory system does not require a answer.                         | controller. True/False. Justify the | CO1- U |  |  |  |
| 12.                         | Draw the circuit for electronic PI controller.                              |                                     |        |  |  |  |
| 13.                         | What are the parameters required to design a best controller?               |                                     |        |  |  |  |
| 14.                         | Summarize the guidelines for the selection of control valves.               |                                     |        |  |  |  |
| 15                          | Show the advantage of cascade control over conventional control             |                                     |        |  |  |  |

15. Show the advantage of cascade control over conventional control CO5- R

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) Consider the system shown in fig. Develop a mathematical CO1- App (10) model for the system. Assume that the effluent stream from a tank is proportional to the hydrostatic liquid pressure that causes the flow of liquid. Cross-sectional area of tank-1 is  $A_1$  in (ft<sup>2</sup>) and of tank-2 is  $A_2$  (ft<sup>2</sup>). The flow rates  $F_1$ ,  $F_2$  and  $F_3$  are in ft<sup>2</sup>/min. Take necessary assumptions.



(b) Derive the transfer function for interactive capacities of two CO1- U (16) tank system

17. (a) Discuss the electronic PI and PID controller and derive the CO2- App (16) expression for the Parameter with neat circuit diagram.

Or

- (b) (i) Illustrate the need and benefit of each component of CO2- U (8) composite PID controller.
  - (ii) Draw and explain pneumatic proportional controller. CO2- U (8)
- 18. (a) Describe the operation of pneumatic actuators with and without CO3- U (16) valve positioner

## Or

- (b) Explain process reaction curve method & damped oscillation CO3- Ana (16) method
- 19. (a) What is valve positioner? And explain in detail about Motion CO4- U (16) balance positioner and Force balance positioner.

## Or

- (b) Describe the operation of pneumatic actuators with and without CO4-U (16) valve positioner.
- 20. (a) Discuss any typical application which needs cascade control CO5-U (16) scheme.

Or

(b) Illustrate the operation of split range controller and inferential CO5- U (16) controller.