A	
\mathbf{A}	

Reg. No.:					

Question Paper Code: 57503

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Seventh Semester

Electronics and Instrumentation Engineering

15UEI703 - INDUSTRIAL AUTOMATION

(Regulation 2015)

Duration: Three hours	Aaximum:	100 Mark	ζS
-----------------------	----------	----------	----

Answer ALL Questions

	Allswei ALL	2 Questions				
	PART A - (10 x	1 = 10 Marks)				
1.	Most industrial control applications:					
	(a) can be solved using one method of control					
	(b) can be done more reliable using solid-sate models					
	(c) must have the process specified correctly to be successful					
	(d) All of the above					
2.	is prince control focussed on individual machines and machines and devices.	·				
	(a) Micro Automation ((b) Porgrammable Autom	ation			
	(c) Flexible Automation ((d) Fixed Automation				
3.	provides flow control functions in a single valve.	controls and directional	CO2-R			
	(a) Transmitter (b) Internet Protocol	(c) I/P Converter	(d) RS 32 Protocol			
4.	Many Distributed control system uses ethern network because	net as a communication	CO2-R			
	(a) speed is not affected by traffics	(b) It is wireless network	standard			
	(c) fully deterministic	(d) it is robust and inexp	ensive			

5.	is used	d for interfacing and computing	CO3-R		
	functions and also provides the means other devices.	s of communication between the			
	(a) Local control unit	(b) Distributed control system			
	(c) Process control system	(d) operator interface			
6.	If one site fails in distributed system .		CO3-R		
	(a) the remaining sites can continue operating				
	(b) all the sites will stop working				
	(c) directly connected sites will stop wo	rking			
	(d) none of the mentioned				
7.	LLOI interface is used for		CO4-R		
	(a) Control Stations	(b) Control room			
	(c) Control mode interlink	(d) Tuning mode			
8.	In distributed systems, link and site failure is detected by				
	(a) polling	(b) handshaking			
	(c) token passing	(d) none of the mentioned			
9.	installed in that controls and monitors the mechanical and electrical equipment.				
	(a) Energy management	(b) Building Automation System			
	(c) Intergated System	(d) Process Control System			
10.	The method of solid modeling that define and vertices, as well as data that define lie is called .		CO5-R		
	(a) Constructive solid geometry	(b) layering			
	(c) boundary representation	(d) isometric			
	PART – B	$(5 \times 2 = 10 \text{ Marks})$			
11.	What are the types of automation?		CO1-U		
12.	. What are the two modes of communication of HART?				
13.	. Mention any four advantages of DCS.				
14.	Compare LLOI and HLOI.		CO4-U		
15.	What are the objectives of energy mana	gement?	CO5-R		

PART – C (5 x 16= 80Marks)

16.	(a)	Elaborate in detail the hierarchical level of automation	CO1-App	(16)
		Or		
	(b)	(i) Explain role of controller in automation and also mention the advantage and disadvange of automation.	CO1-App	(12)
		(ii) List out the types of Automation in a plant.	CO1-U	(4)
17.	(a)	(i) Explain the features of HART network and how the control system is interfaced to it.	CO2-U	(10)
		(ii) Discuss the implementation of HART field controller. Or	CO2-U	(6)
	(b)	By the knowledge of control valve, evaluate the list of problems that can occur in control valve and suggest trouble shooting methods	CO2-U	(16)
18.	(a)	Draw and explain basic DCS system architecture. Or	CO3-App	(16)
	(b)	Explain any one popular communication protocol used in field level.	CO3-U	(16)
19.	(a)	Compare Low level and high level interfaces in DCS Or	CO4-U	(16)
	(b)	Describe in detail about the low level and high level engineering interfaces.	CO4-U	(16)
20.	(a)	Explain about the structure of building automation and control networks with neat diagram. Or	CO5-U	(16)
	(b)	Describe with neat diagram the operation of building automation system.	CO5-U	(16)